Revisiting the Sequence Constraint

  • Willem-Jan van Hoeve
  • Gilles Pesant
  • Louis-Martin Rousseau
  • Ashish Sabharwal
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4204)


Many combinatorial problems, such as car sequencing and rostering, feature sequence constraints, restricting the number of occurrences of certain values in every subsequence of a given width. To date, none of the filtering algorithms proposed guaranteed domain consistency. In this paper, we present three filtering algorithms for the sequence constraint, with complementary strengths. One borrows ideas from dynamic programming; another reformulates it as a regular constraint; the last is customized. The last two algorithms establish domain consistency. Our customized algorithm does so in polynomial time, and can even be applied to a generalized sequence constraint for subsequences of variable widths. Experimental results show the practical usefulness of each.


Cardinality Constraint Local Graph Sequence Constraint Knapsack Constraint Goal Vertex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Apt, K.R.: Principles of Constraint Programming. Cambridge Univ. Press, Cambridge (2003)zbMATHCrossRefGoogle Scholar
  2. 2.
    Beldiceanu, N., Carlsson, M.: Revisiting the Cardinality Operator and Introducing the Cardinality-Path Constraint Family. In: Codognet, P. (ed.) ICLP 2001. LNCS, vol. 2237, pp. 59–73. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Beldiceanu, N., Carlsson, M., Rampon, J.-X.: Global Constraint Catalog. Technical Report T2005-08, SICS (2005)Google Scholar
  4. 4.
    Beldiceanu, N., Contejean, E.: Introducing global constraints in CHIP. Journal of Mathematical and Computer Modelling 20(12), 97–123 (1994)zbMATHCrossRefGoogle Scholar
  5. 5.
    Demassey, S., Pesant, G., Rousseau, L.-M.: A cost-regular based hybrid column generation approach. Constraints (under final review)Google Scholar
  6. 6.
    Mohr, R., Masini, G.: Good Old Discrete Relaxation. In: European Conference on Artificial Intelligence (ECAI), pp. 651–656 (1988)Google Scholar
  7. 7.
    Pesant, G.: A Regular Language Membership Constraint for Finite Sequences of Variables. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 482–495. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Régin, J.-C.: Generalized Arc Consistency for Global Cardinality Constraint. In: AAAI/IAAI, pp. 209–215. AAAI Press/The MIT Press (1996)Google Scholar
  9. 9.
    Régin, J.-C.: Combination of Among and Cardinality Constraints. In: Barták, R., Milano, M. (eds.) CPAIOR 2005. LNCS, vol. 3524, pp. 288–303. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Régin, J.-C., Puget, J.-F.: A Filtering Algorithm for Global Sequencing Constraints. In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 32–46. Springer, Heidelberg (1997)Google Scholar
  11. 11.
    Trick, M.A.: A Dynamic Programming Approach for Consistency and Propagation for Knapsack Constraints. Annals of Operations Research 118, 73–84 (2003)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Willem-Jan van Hoeve
    • 1
  • Gilles Pesant
    • 2
    • 3
  • Louis-Martin Rousseau
    • 2
    • 3
    • 4
  • Ashish Sabharwal
    • 1
  1. 1.Department of Computer ScienceCornell UniversityIthacaUSA
  2. 2.École Polytechnique de MontréalMontrealCanada
  3. 3.Centre for Research on Transportation (CRT)Université de MontréalMontrealCanada
  4. 4.Oméga Optimisation Inc. 

Personalised recommendations