Randomization in Constraint Programming for Airline Planning

  • Lars Otten
  • Mattias Grönkvist
  • Devdatt Dubhashi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4204)


We extend the common depth-first backtrack search for constraint satisfaction problems with randomized variable and value selection. The resulting methods are applied to real-world instances of the tail assignment problem, a certain kind of airline planning problem. We analyze the performance impact of these extensions and, in order to exploit the improvements, add restarts to the search procedure. Finally computational results of the complete approach are discussed.


Column Generation Constraint Program Constraint Satisfaction Problem Universal Strategy Alldifferent Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bach, E.: Realistic analysis of some randomized algorithms. Journal of Computer and System Sciences 42, 30–53 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Barnhart, C., Boland, N.L., Clarke, L.W., Johnson, E.L., Nemhauser, G.L., Shenoi, R.G.: Flight string models for aircraft fleeting and routing. Transportation Science 32, 208–220 (1998)zbMATHCrossRefGoogle Scholar
  3. 3.
    Gabteni, S., Grönkvist, M.: A hybrid column generation and constraint programming optimizer for the tail assignment problem. In: Beck, J.C., Smith, B.M. (eds.) CPAIOR 2006. LNCS, vol. 3990, pp. 89–103. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Gomes, C., Selman, B., Crato, N., Kautz, H.: Heavy-tailed phenomena in satisfiability and constraint satisfaction problems. Journal of Automated Reasoning 24, 67–100 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Gomes, C., Selman, B., Kautz, H.: Boosting combinatorial search through randomization. In: Proceedings of the 15th National Conference on Artificial Intelligence (AAAI 1998) (1998)Google Scholar
  6. 6.
    Gopalan, R., Talluri, K.T.: Mathematical models in airline schedule planning: A survey. Annals of Operations Research 76, 155–185 (1998)zbMATHCrossRefGoogle Scholar
  7. 7.
    Grönkvist, M.: A constraint programming model for tail assignment. In: Régin, J.-C., Rueher, M. (eds.) CPAIOR 2004. LNCS, vol. 3011, pp. 142–156. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Grönkvist, M.: The tail assigment problem. Ph.D thesis, Chalmers University of Technology, Gothenburg, Sweden (2005)Google Scholar
  9. 9.
    Lehmer, D.H.: Mathematical methods in large-scale computing units. In: Proceedings of the 2nd Symposium on Large-Scale Digital Calculating Machinery, pp. 141–146 (1949)Google Scholar
  10. 10.
    Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of Las Vegas algorithms. Information Processing Letters 47, 173–180 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Mulmuley, K.: Randomized Geometric Algorithms and Pseudorandom Generators. Algorithmica 16, 450–463 (1996)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Walsh, T.: Search in a small world. In: Proceedings of the 16th International Joint Conference on Artificial Intelligence (IJCAI 1999), pp. 1172–1177 (1999)Google Scholar
  13. 13.
    Williams, R., Gomes, C., Selman, B.: Backdoors to typical case complexity. In: Proceedings of the 18th International Joint Conference on Artificial Intelligence (IJCAI 2003) (2003)Google Scholar
  14. 14.
    Williams, R., Gomes, C., Selman, B.: On the connections between backdoors, restarts, and heavy-tailedness in combinatorial search. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Gecode: Generic constraint development environment,

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Lars Otten
    • 1
  • Mattias Grönkvist
    • 1
    • 2
  • Devdatt Dubhashi
    • 1
  1. 1.Department of Computer Science and EngineeringChalmers University of TechnologyGothenburgSweden
  2. 2.Jeppesen (Carmen Systems AB)GothenburgSweden

Personalised recommendations