Advertisement

When Interval Analysis Helps Inter-block Backtracking

  • Bertrand Neveu
  • Gilles Chabert
  • Gilles Trombettoni
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4204)

Abstract

Inter-block backtracking (IBB) computes all the solutions of sparse systems of non-linear equations over the reals. This algorithm, introduced in 1998 by Bliek et al., handles a system of equations previously decomposed into a set of (small) k ×k sub-systems, called blocks. Partial solutions are computed in the different blocks and combined together to obtain the set of global solutions.

When solutions inside blocks are computed with interval-based techniques, IBB can be viewed as a new interval-based algorithm for solving decomposed equation systems. Previous implementations used Ilog Solver and its IlcInterval library. The fact that this interval-based solver was more or less a black box implied several strong limitations.

The new results described in this paper come from the integration of IBB with the interval-based library developed by the second author. This new library allows IBB to become reliable (no solution is lost) while still gaining several orders of magnitude w.r.t. solving the whole system. We compare several variants of IBB on a sample of benchmarks, which allows us to better understand the behavior of IBB. The main conclusion is that the use of an interval Newton operator inside blocks has the most positive impact on the robustness and performance of IBB. This modifies the influence of other features, such as intelligent backtracking and filtering strategies.

Keywords

intervals decomposition solving sparse systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benhamou, F., Goualard, F., Granvilliers, L., Puget, J.-F.: Revising Hull and Box Consistency. In: ICLP, pp. 230–244 (1999)Google Scholar
  2. 2.
    Bliek, C., Neveu, B., Trombettoni, G.: Using Graph Decomposition for Solving Continuous CSPs. In: Maher, M.J., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp. 102–116. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  3. 3.
    Bouma, W., Fudos, I., Hoffmann, C.M., Cai, J., Paige, R.: Geometric constraint solver. Computer Aided Design 27(6), 487–501 (1995)zbMATHCrossRefGoogle Scholar
  4. 4.
    Chabert, G.: Contributions á la résolution de Contraintes sur intervalles? Ph.D thesis, Université de Nice–Sophia Antipolis (2006) (to be defended)Google Scholar
  5. 5.
    Debruyne, R., Bessière, C.: Some Practicable Filtering Techniques for the Constraint Satisfaction Problem. In: Proc. of IJCAI, pp. 412–417 (1997)Google Scholar
  6. 6.
    Dechter, R.: Enhancement schemes for constraint processing: Backjumping, learning, and cutset decomposition. Artificial Intelligence 41(3), 273–312 (1990)CrossRefGoogle Scholar
  7. 7.
    Granvilliers, L.: RealPaver User’s Manual, version 0.3. University of Nantes (2003), Available at: www.sciences.univ-nantes.fr/info/perso/permanents/granvil/realpaver
  8. 8.
    Granvilliers, L.: Realpaver: An interval solver using constraint satisfaction techniques. ACM Transactions on Mathematical Software (accepted for publication)Google Scholar
  9. 9.
    Van Hentenryck, P., Michel, L., Deville, Y.: Numerica: A Modeling Language for Global Optimization. MIT Press, Cambridge (1997)Google Scholar
  10. 10.
    Hoffmann, C., Lomonossov, A., Sitharam, M.: Finding solvable subsets of constraint graphs. In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 463–477. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  11. 11.
    ILOG, Av. Galliéni, Gentilly. Ilog Solver V. 5, Users’ Reference Manual (2000)Google Scholar
  12. 12.
    Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analysis. Springer, Heidelberg (2001)zbMATHGoogle Scholar
  13. 13.
    Jermann, C., Neveu, B., Trombettoni, G.: Algorithms for Identifying Rigid Subsystems in Geometric Constraint Systems. In: Proc. IJCAI, pp. 233–238 (2003)Google Scholar
  14. 14.
    Neveu, B., Jermann, C., Trombettoni, G.: Inter-block Backtracking: Exploiting the Structure in Continuous CSPs. In: Jermann, C., Neumaier, A., Sam, D. (eds.) COCOS 2003. LNCS, vol. 3478, pp. 15–30. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Jermann, C., Trombettoni, G., Neveu, B., Mathis, P.: Decomposition of Geometric Constraint Systems: a Survey. Int. Journal of Computational Geometry and Applications (IJCGA) 16 (2006)Google Scholar
  16. 16.
    Latham, R.S., Middleditch, A.E.: Connectivity analysis: A tool for processing geometric constraints. Computer Aided Design 28(11), 917–928 (1996)CrossRefGoogle Scholar
  17. 17.
    Lebbah, Y.: Contribution á la résolution de Contraintes par Consistance Forte. Ph.D thesis, Université de Nantes (1999)Google Scholar
  18. 18.
    Lebbah, Y., Michel, C., Rueher, M., Daney, D., Merlet, J.P.: Efficient and safe global constraints for handling numerical constraint systems. SIAM Journal on Numerical Analysis 42(5), 2076–2097 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Lhomme, O.: Consistency Tech. for Numeric CSPs. In: IJCAI, pp. 232–238 (1993)Google Scholar
  20. 20.
    McAllester, D.A.: Partial order backtracking. Research Note, Artificial Intelligence Laboratory. MIT (1993), ftp://ftp.ai.mit.edu/people/dam/dynamic.ps
  21. 21.
    Merlet, J.-P.: Optimal design for the micro robot. In: IEEE Int. Conf. on Robotics and Automation (2002)Google Scholar
  22. 22.
    Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University Press, Cambridge (1990)zbMATHGoogle Scholar
  23. 23.
    Wilczkowiak, M., Trombettoni, G., Jermann, C., Sturm, P., Boyer, E.: Scene Modeling Based on Constraint System Decomposition Tech. In: Proc. ICCV (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Bertrand Neveu
    • 1
  • Gilles Chabert
    • 1
  • Gilles Trombettoni
    • 1
  1. 1.COPRIN ProjectINRIASophia.AntipolisFrance

Personalised recommendations