Data Analysis on Complicated Construction Data Sources: Vision, Research, and Recent Developments

  • Lucio Soibelman
  • Jianfeng Wu
  • Carlos Caldas
  • Ioannis Brilakis
  • Ken-Yu Lin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4200)

Abstract

Compared with construction data sources that are usually stored and analyzed in spreadsheets and single data tables, data sources with more complicated structures, such as text documents, site images, web pages, and project schedules have been less intensively studied due to additional challenges in data preparation, representation, and analysis. In this paper, our definition and vision for advanced data analysis addressing such challenges are presented, together with related research results from previous work, as well as our recent developments of data analysis on text-based, image-based, web-based, and network-based construction sources. It is shown in this paper that particular data preparation, representation, and analysis operations should be identified, and integrated with careful problem investigations and scientific validation measures in order to provide general frameworks in support of information search and knowledge discovery from such information-abundant data sources.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Buchheit, R.B., Garret Jr., J.H., Lee, S.R., Brahme, R.: A Knowledge Discovery Case Study for the Intelligent Workplace. In: Proc. of the 8th Int. Conf. on Comp. in Civil and Building Eng., Stanford, CA, pp. 914–921 (2000)Google Scholar
  2. 2.
    Soibelman, L., Kim, H.: Data Preparation Process for Construction Knowledge Generation through Knowledge Discovery in Databases. J. of Comp. in Civil Eng. 1, 39–48 (2002)CrossRefGoogle Scholar
  3. 3.
    Soibelman, L., Kim, H., Wu, J.: Knowledge Discovery for Project Delay Analysis. Bauingenieur (February 2005)Google Scholar
  4. 4.
    Caldas, H.C., Soibelman, L., Han, J.: Automated Classification of Construction Project Documents. J. of Comp. in Civil Eng. 4, 234–243 (2002)CrossRefGoogle Scholar
  5. 5.
    Hajjar, D., AbouRizk, M.S.: Integrating Document Management with Project and Company Data. J. of Comp. in Civil Eng. 1, 70–77 (2000)CrossRefGoogle Scholar
  6. 6.
    Zhu, Y., Issa, R.R.A., Cox, R.F.: Web-Based Construction Document Processing via Malleable Frame. J. of Comp. in Civil Eng. 3, 157–169 (2001)CrossRefGoogle Scholar
  7. 7.
    Fruchter, R., Reiner, K.: Model-Centered World Wide Web Coach. In: Proc. of 3rd Congress on Comp. in Civil Engineering, pp. 1–7. ASCE, Anaheim (1996)Google Scholar
  8. 8.
    Kosovac, B., Froese, T.M., Vanier, D.J.: Integration Heterogeneous Data Representations in Model-Based AEC/FM Systems. In: Proc. of CIT 2000, Reykjavik, Iceland, pp. 556–567 (2000)Google Scholar
  9. 9.
    Yang, M.C., Wood, W.H., Cutkosky, M.R.: Data Mining for Thesaurus Generation in Informal Design Information Retrieval. In: Proc. of Int. Congress on Comp. in Civil Eng., pp. 189–200. ASCE, Boston (1998)Google Scholar
  10. 10.
    Scherer, R.J., Reul, S.: Retrieval of Project Knowledge from Heterogeneous AEC Documents. In: Proc. of the 8th Int. Conf. on Comp. in Civil and Building Eng., Stanford, CA, pp. 812–819 (2000)Google Scholar
  11. 11.
    Wood, W.H.: The Development of Modes in Textual Design Data. In: Proc. of the 8th Int. Conf. on Comp. in Civil and Building Eng., Stanford, CA, pp. 882–889 (2000)Google Scholar
  12. 12.
    Caldas, H.C., Soibelman, L., Gasser, L.: Methodology for the Integration of Project Documents in Model-Based Information Systems. J. of Comp. in Civil Eng. 1, 25–33 (2005)CrossRefGoogle Scholar
  13. 13.
    Dewan, R., Freimer, M., Seimann, A.: Portal Kombat: The Battle between Web Pages to become the Point of Entry to the World Wide Web. In: Proc. of the 32nd Hawaii Intl. Conf. System Science. IEEE, Los Alamitos (1999)Google Scholar
  14. 14.
    El-Diraby, T.A., Lima, C., Feis, S.: Domain Taxonomy for Construction Concepts: Toward a Formal Ontology for Construction Knowledge. J. of Comp. in Civil Eng. 4, 394–406 (2005)CrossRefGoogle Scholar
  15. 15.
    Lima, C., Stephens, J., Böhms, M.: The bcXML: Supporting Ecommerce and Knowledge Management in the Construction Industry. ITCON, 293–308 (2003)Google Scholar
  16. 16.
    Staub-French, S., Fischer, M., Kunz, J., Paulson, B., Ishii, K.: An Ontology for Relating Features of Building Product Models with Construction Activities to Support Cost Estimating, CIFE Working Paper #70, Stanford University (July 2002)Google Scholar
  17. 17.
    Lin, K., Soibelman, L.: Promoting Transactions for A/E/C Product Information. Automation in Construction. Elsevier Science, Amsterdam (in print)Google Scholar
  18. 18.
    Brilakis, I., Soibelman, L.: Material-Based Construction Site Image Retrieval. J. of Comp. in Civil Eng. 4, 341–355 (2005)CrossRefGoogle Scholar
  19. 19.
    Abudayyeh, O.: Audio/Visual Information in Construction Project Control. J. of Adv. Eng. Software 2, 97–101 (1997)CrossRefGoogle Scholar
  20. 20.
    Brilakis, I., Soibelman, L.: Multi-Modal Image Retrieval from Construction Databases and Model-Based Systems. J. of Constr. Eng. and Mgmt. (in print) (July 2006)Google Scholar
  21. 21.
    Water Environment Federation (WEF): Existing Sewer Evaluation and Rehabilitation. ASCE Manuals and References on Eng. Practices, Ref. No. 62, Alexandria, VA (1994)Google Scholar
  22. 22.
    Pipeline Assessment and Certification Program (PACP) Manual, 2nd edn. Reference Manual, NASSCO (2001)Google Scholar
  23. 23.
    Chae, M.J., Abraham, D.M.: Neuro-Fuzzy Approaches for Sanitary Sewer Pipeline Condition Assessment. J. Comp. in Civil. Eng. 1, 4–14 (2001)CrossRefGoogle Scholar
  24. 24.
    Sinha, S.K., Fieguth, P.W.: Automated Detection of Cracks in Buried Concrete Pipe Images. Automation in Construction 1, 58–72 (2005)Google Scholar
  25. 25.
    Sinha, S.K., Fieguth, P.W.: Neuro-Fuzzy Network for the Classification of Buried Pipe Defects. Automation in Construction 1, 73–83 (2005)Google Scholar
  26. 26.
    Hegazy, T., Zhang, K.: Daily Windows Delay Analysis. J. of Constr. Eng. and Mgmt. 5, 505–512 (2005)CrossRefGoogle Scholar
  27. 27.
    Shi, J.J., Cheung, S.O., Arditi, D.: Construction Delay Computation Method. J. of Comp. in Civil Eng. 1, 60–65 (2001)Google Scholar
  28. 28.
    Hegazy, T., Kassab, M.: Resource Optimization Using Combined Simulation and Genetic Algorithms. J. of Constr. Eng. and Mgmt. 6, 698–705 (2003)CrossRefGoogle Scholar
  29. 29.
    Feng, C., Liu, L., Burns, S.A.: Using Genetic Algorithms to Solve Construction Time-Cost Trade-Off Problems. J. of Comp. in Civil Eng. 3, 184–189 (1997)CrossRefGoogle Scholar
  30. 30.
    El-Rayes, K., Kandil, A.: Time-Cost-Quality Trade-off Analysis for Highway Construction. J. of Constr. Eng. and Mgmt. 4, 477–486 (2005)CrossRefGoogle Scholar
  31. 31.
    Akinci, B., Fischer, M., Kunz, J.: Automated Generation of Work Spaces Required by Construction Activities. J. of Constr. Eng. and Mgmt. 4, 306–315 (2002)CrossRefGoogle Scholar
  32. 32.
    Kamat, V.R., Martinez, J.C.: Large-Scale Dynamic Terrain in Three-Dimensional Construction Process Visualizations. J. of Comp. in Civil Eng. 2, 160–171 (2005)CrossRefGoogle Scholar
  33. 33.
    Dzeng, R., Tommelain, I.D.: Boiler Erection Scheduling Using Product Models and Case-Based Reasoning. J. of Constr. Eng. and Mgmt. 3, 338–347 (1997)CrossRefGoogle Scholar
  34. 34.
    Dzeng, R., Lee, H.: Critiquing Contractors’ Scheduling by Integrating Rule-Based and Case-Based Reasoning. Automation in Construction 5, 665–678 (2004)CrossRefGoogle Scholar
  35. 35.
    Kolisch, R., Sprecher, A., Drexl, A.: Characterization and Generation of a General Class of Resource-Constrained Project Scheduling Problems. Mgmt. Science, 1693–1703 (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Lucio Soibelman
    • 1
  • Jianfeng Wu
    • 1
  • Carlos Caldas
    • 2
  • Ioannis Brilakis
    • 3
  • Ken-Yu Lin
    • 4
  1. 1.Department of Civil and Environmental EngineeringCarnegie Mellon UniversityPittsburghUSA
  2. 2.Department of Civil, Architecture and Environmental EngineeringUniversity of Texas at AustinAustinUSA
  3. 3.Department of Civil and Environmental EngineeringUniversity of MichiganAnn ArborUSA
  4. 4.Ming-Jian Power CorporationTaipeiTaiwan

Personalised recommendations