Liveness by Invisible Invariants

  • Yi Fang
  • Kenneth L. McMillan
  • Amir Pnueli
  • Lenore D. Zuck
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4229)


The method of Invisible Invariants was developed in order to verify safety properties of parametrized systems in a fully automatic manner. In this paper, we apply the method of invisible invariant to “bounded response” properties, i.e., liveness properties of the type \( p \Rightarrow \diamondsuit q\) that are bounded – once a p-state is reached, it takes a bounded number of rounds (where a round is a sequence of steps in which each process has been given a chance to proceed) to reach a q-state – thus, they are essentially safety properties.

With a “liveness monitor” that observes certain behavior of a system, establishing “bounded response” properties over the system is reduced to the verification of invariant properties.

It is often the case that the inductive invariants for systems with “liveness monitors” contain assertions of a certain form that the original method of invisible invariant is not able to generate, nor to check inductiveness. To accommodate invariants of such forms, we extend the techniques used for invariant generation, as well as the small model theorem for validity check.


Model Check Atomic Formula Safety Property Program Simple Liveness Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [AK86]
    Apt, K.R., Kozen, D.: Limits for automatic program verification of finite-state concurrent systems. Info. Proc. Lett. 22(6) (1986)Google Scholar
  2. [APR+01]
    Arons, T., Pnueli, A., Ruah, S., Xu, J., Zuck, L.D.: Parameterized verification with automatically computed inductive assertions. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 221–234. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. [APZ03]
    Arons, T., Pnueli, A., Zuck, L.D.: Parameterized verification by probabilistic abstraction. In: Gordon, A.D. (ed.) FOSSACS 2003. LNCS, vol. 2620, pp. 87–102. Springer, Heidelberg (2003)Google Scholar
  4. [BAS02]
    Biere, A., Artho, C., Schuppan, V.: Liveness checking as safety checking. In: Cleaveland, R., Garavel, H. (eds.) Electronic Notes in Theoretical Computer Science, vol. 66. Elsevier, Amsterdam (2002)Google Scholar
  5. [BBC+95]
    Bjørner, N., Browne, I.A., Chang, E., Colón, M., Kapur, A., Manna, Z., Sipma, H.B., Uribe, T.E.: STeP: The Stanford Temporal Prover, User’s Manual. Technical Report STAN-CS-TR-95-1562, Computer Science Department, Stanford University (November 1995)Google Scholar
  6. [BFPZ05]
    Balaban, I., Fang, Y., Pnueli, A., Zuck, L.D.: An invisible invariant verifier. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 291–295. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. [CGJ95]
    Clarke, E.M., Grumberg, O., Jha, S.: Verifying parametrized networks using abstraction and regular languages. In: Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 395–407. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  8. [CLP84]
    Cohen, S., Lehmann, D., Pnueli, A.: Symmetric and economical solutions to the mutual exclusion problem in a distributed system. Theor. Comp. Sci. 34, 215–225 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  9. [CS02]
    Colón, M.A., Sipma, H.B.: Practical methods for proving program termination. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 442–454. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. [EK00]
    Emerson, E.A., Kahlon, V.: Reducing model checking of the many to the few. In: 17th International Conference on Automated Deduction (CADE-17), pp. 236–255 (2000)Google Scholar
  11. [EN95]
    Emerson, E.A., Namjoshi, K.S.: Reasoning about rings. In: Proc. 22nd ACM Conf. on Principles of Programming Languages, POPL 1995, San Francisco (1995)Google Scholar
  12. [FPPZ04a]
    Fang, Y., Piterman, N., Pnueli, A., Zuck, L.D.: Liveness with incomprehensible ranking. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 482–496. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. [FPPZ04b]
    Fang, Y., Piterman, N., Pnueli, A., Zuck, L.D.: Liveness with invisible ranking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 223–238. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. [GS97]
    Gyuris, V., Sistla, A.P.: On-the-fly model checking under fairness that exploits symmetry. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  15. [GZ98]
    Gribomont, E.P., Zenner, G.: Automated verification of szymanski’s algorithm. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 424–438. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  16. [JN00]
    Jonsson, B., Nilsson, M.: Transitive closures of regular relations for verifying infinite-state systems. In: Schwartzbach, M.I., Graf, S. (eds.) TACAS 2000. LNCS, vol. 1785, p. 220. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  17. [LHR97]
    Lesens, D., Halbwachs, N., Raymond, P.: Automatic verification of parameterized linear networks of processes. In: 24th ACM Symposium on Principles of Programming Languages, POPL 1997, Paris (1997)Google Scholar
  18. [McM99]
    McMillan, K.L.: Verification of Infinite State Systems by Compositional Model Checking. In: Pierre, L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 219–237. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  19. [MP95]
    Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems: Safety. Springer, New York (1995)CrossRefzbMATHGoogle Scholar
  20. [OSR93]
    Owre, S., Shankar, N., Rushby, J.M.: User guide for the PVS specification and verification system (draft). Technical report, Comp. Sci., Laboratory, SRI International, Menlo Park, CA (1993)Google Scholar
  21. [PRZ01]
    Pnueli, A., Ruah, S., Zuck, L.D.: Automatic deductive verification with invisible invariants. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 82–97. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  22. [PXZ02]
    Pnueli, A., Xu, J., Zuck, L.: Liveness with (0,1, ∞ )-counter abstraction (2002)Google Scholar
  23. [VW86]
    Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification. In: Proc. First IEEE Symp. Logic in Comp. Sci., pp. 332–344 (1986)Google Scholar
  24. [ZP04]
    Zuck, L., Pnueli, A.: Model checking and abstraction to the aid of parameterized systems. Computer Languages, Systems, and Structures 30(3–4), 139–169 (2004)CrossRefzbMATHGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2006

Authors and Affiliations

  • Yi Fang
    • 1
  • Kenneth L. McMillan
    • 2
  • Amir Pnueli
    • 3
  • Lenore D. Zuck
    • 4
  1. 1.MicrosoftRedmond
  2. 2.Cadence Design SystemsBerkeley
  3. 3.New York UniversityNew York
  4. 4.University of Illinois at ChicagoUSA

Personalised recommendations