Type Inference in Systems Biology

  • François Fages
  • Sylvain Soliman
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4210)

Abstract

Type checking and type inference are important concepts and methods of programming languages and software engineering. Type checking is a way to ensure some level of consistency, depending on the type system, in large programs and in complex assemblies of software components. Type inference provides powerful static analyses of pre-existing programs without types, and facilitates the use of type systems by freeing the user from entering type information. In this paper, we investigate the application of these concepts to systems biology. More specifically, we consider the Systems Biology Markup Language SBML and the Biochemical Abstract Machine BIOCHAM with their repositories of models of biochemical systems. We study three type systems: one for checking or inferring the functions of proteins in a reaction model, one for checking or inferring the activation and inhibition effects of proteins in a reaction model, and another one for checking or inferring the topology of compartments or locations. We show that the framework of abstract interpretation elegantly applies to the formalization of these abstractions and to the implementation of linear time type checking as well as type inference algorithms. Through some examples, we show that the analysis of biochemical models by type inference provides accurate and useful information. Interestingly, such a mathematical formalization of the abstractions used in systems biology already provides some guidelines for the extensions of biochemical reaction rule languages.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cardelli, L.: Typeful programming. In: Neuhold, E.J., Paul, M. (eds.) Formal Description of Programming Concepts, pp. 431–507. Springer, Heidelberg (1991)Google Scholar
  2. 2.
    Hucka, M., et al.: The systems biology markup language (SBML): A medium for representation and exchange of biochemical network models. Bioinformatics 19, 524–531 (2003)CrossRefGoogle Scholar
  3. 3.
    Fages, F., Soliman, S., Chabrier-Rivier, N.: Modelling and querying interaction networks in the biochemical abstract machine BIOCHAM. Journal of Biological Physics and Chemistry 4, 64–73 (2004)CrossRefGoogle Scholar
  4. 4.
    Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: POPL 1977: Proceedings of the 6th ACM Symposium on Principles of Programming Languages, pp. 238–252. ACM Press, New York (1977)CrossRefGoogle Scholar
  5. 5.
    Cousot, P.: Types as abstract interpretation (invited paper). In: POPL 1997: Proceedings of the 24th ACM Symposium on Principles of Programming Languages, pp. 316–331. ACM Press, New York (1997)CrossRefGoogle Scholar
  6. 6.
    Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chemistry 81, 2340–2361 (1977)CrossRefGoogle Scholar
  7. 7.
    Calzone, L., Chabrier-Rivier, N., Fages, F., Soliman, S.: Machine learning biochemical networks from temporal logic properties. Transactions on Computational Systems Biology (2006) CMSB 2005, Special Issue (to appear)Google Scholar
  8. 8.
    Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M., Rubin, G.M., Sherlock, G.: Gene ontology: tool for the unification of biology. Nature Genetics 25, 25–29 (2000)CrossRefGoogle Scholar
  9. 9.
    Levchenko, A., Bruck, J., Sternberg, P.W.: Scaffold proteins biphasically affect the levels of mitogen-activated protein kinase signaling and reduce its threshold properties. PNAS 97, 5818–5823 (2000)CrossRefGoogle Scholar
  10. 10.
    Kohn, K.W.: Molecular interaction map of the mammalian cell cycle control and DNA repair systems. Molecular Biology of the Cell 10, 2703–2734 (1999)Google Scholar
  11. 11.
    Chabrier-Rivier, N., Chiaverini, M., Danos, V., Fages, F., Schächter, V.: Modeling and querying biochemical interaction networks. Theoretical Computer Science 325, 25–44 (2004)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Thomas, R., Gathoye, A.M., Lambert, L.: A complex control circuit: regulation of immunity in temperate bacteriophages. European Journal of Biochemistry 71, 211–227 (1976)CrossRefGoogle Scholar
  13. 13.
    Soulé, C.: Graphic requirements for multistationarity. ComplexUs 1, 123–133 (2003)CrossRefGoogle Scholar
  14. 14.
    Markevich, N.I., Hoek, J.B., Kholodenko, B.N.: Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades. Journal of Cell Biology 164, 353–359 (2005)CrossRefGoogle Scholar
  15. 15.
    Ciliberto, A., Novák, B., Tyson, J.J.: Steady states and oscillations in the p53/mdm2 network. Cell Cycle 4, 488–493 (2005)CrossRefGoogle Scholar
  16. 16.
    Kaufman, M.: Private communication (2006)Google Scholar
  17. 17.
    Marhl, M., Haberichter, T., Brumen, M., Heinrich, R.: Complex calcium oscillations and the role of mitochondria and cytosolic proteins. BioSystems 57, 75–86 (2000)CrossRefGoogle Scholar
  18. 18.
    Borghans, J., Dupont, G., Goldbeter, A.: Complex intracellular calcium oscillations: a theoretical exploration of possible mechanisms. Biophysical Chemistry 66, 25–41 (1997)CrossRefGoogle Scholar
  19. 19.
    Ghosh, R., Tomlin, C.: Lateral inhibition through delta-notch signaling: A piecewise affine hybrid model. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 232–246. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  20. 20.
    Thomas, R., Kaufman, M.: Multistationarity, the basis of cell differentiation and memory. Chaos 11, 170–195 (2001)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • François Fages
    • 1
  • Sylvain Soliman
    • 1
  1. 1.Projet Contraintes, INRIA RocquencourtLe Chesnay CedexFrance

Personalised recommendations