Modeling Evolutionary Dynamics of HIV Infection

  • Luca Sguanci
  • Pietro Liò
  • Franco Bagnoli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4210)


We have modelled the within-patient evolutionary process during HIV infection. We have studied viral evolution at population level (competition on the same receptor) and at species level (competitions on different receptors). During the HIV infection, several mutants of the virus arise, which are able to use different chemokine receptors, in particular the CCR5 and CXCR4 coreceptors (termed R5 and X4 phenotypes, respectively). Phylogenetic inference of chemokine receptors suggests that virus mutational pathways may generate R5 variants able to interact with a wide range of chemokine receptors different from CXCR4. Using the chemokine tree topology as conceptual framework for HIV viral speciation, we present a model of viral phenotypic mutations from R5 to X4 strains which reflect HIV late infection dynamics. Our model investigates the action of Tumor Necrosis Factor in AIDS progression and makes suggestions on better design of HAART therapy.


Chemokine Receptor Last Common Ancestor Phenotypic Distance Modeling Evolutionary Dynamics Multi Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Darwin, C.: On the origin of species, 1859. New York University Press (1988)Google Scholar
  2. 2.
    Biebricher, C.K., Eigen, M.: The error threshold. Virus Res. 107, 117–127 (2005)CrossRefGoogle Scholar
  3. 3.
    Eigen, M., Schuster, P.: The hypercycle. Naturwissenschaften 64, 541–565 (1977)CrossRefGoogle Scholar
  4. 4.
    Ho, D., Neumann, A.U., Perelson, A.S., Chen, W., Leonard, J.M., Markowitz, M.: Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373, 123–126 (1995)CrossRefGoogle Scholar
  5. 5.
    Karlsson, I., Antonsson, L., Shi, Y., Oberg, M., Karlsson, A., Albert, J., Olde, B., Owman, C., Jansson, M., Fenyo, E.M.: Coevolution of RANTES sensitivity and mode of CCR5 receptor use by human immunodeficiency virus type 1 of the R5 phenotype. J. Virol. 78, 11807–11815 (2004)CrossRefGoogle Scholar
  6. 6.
    Gorry, P.R., Churchill, M., Crowe, S.M., Cunningham, A.L., Gabuzda, D.: Pathogenesis of macrophage tropic HIV. Curr. HIV Res. 3, 53–60 (2005)CrossRefGoogle Scholar
  7. 7.
    Gray, L., Sterjovski, J., Churchill, M., Ellery, P., Nasr, N., Lewin, S.R., Crowe, S.M., Wesselingh, S.L., Cunningham, A.L., Gorry, P.R.: Uncoupling coreceptor usage of human immunodeficiency virus type 1 (HIV-1) from macrophage tropism reveals biological properties of CCR5-restricted HIV-1 isolates from patients with acquired immunodeficiency syndrome. Virology 337, 384–398 (2005)CrossRefGoogle Scholar
  8. 8.
    Herbeuval, J.P., Hardy, A.W., Boasso, A., Anderson, S.A., Dolan, M.J., Dy, M., Shearer, G.M.: Regulation of TNF-related apoptosis-inducing ligand on primary CD4+ T cells by HIV-1: Role of type I IFN-producing plasmacytoid dendritic cells. Proc. Nat. Acad. Sci. USA 102, 13974–13979 (2005)CrossRefGoogle Scholar
  9. 9.
    Pavlakis, G.N., Valentin, A., Morrow, M., Yarchoan, R.: Differential effects of TNF on HIV-1 expression: R5 inhibition and implications for viral evolution. In: Int. Conf. AIDS, July 11-16, vol. 15 (abstract no. MoOrA1048) (2004)Google Scholar
  10. 10.
    Dayhoff, M.O., Schwartz, R.M., Orcutt, B.C.: A model of evolutionary change in proteins. In: Dayhoff, M.O. (ed.) Atlas of Protein Sequence and Structure, National Biomedical Research Foundation, vol. 5(suppl. 3), pp. 345–352 (1978)Google Scholar
  11. 11.
    Jones, D.T., Taylor, W.R., Thornton, J.M.: A mutation data matrix for transmembrane proteins. FEBS Lett. 339, 269–275 (1994)CrossRefGoogle Scholar
  12. 12.
    Whelan, S., Goldman, N.: A general empirical model of protein evolution derived from multiple protein families using a maximum likelihood approach. Mol. Biol. Evol. 18, 691–699 (2001)Google Scholar
  13. 13.
    Yang, Z.: Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. J. Mol. Evol. 39, 306–314 (1994)CrossRefGoogle Scholar
  14. 14.
    Yang, Z.: PAML: a program package for phylogenetic analysis by maximum likelihood. CABIOS 13, 555–556 (1997)Google Scholar
  15. 15.
    Whelan, S., Liò, P., Goldman, N.: P. Molecularhylogenetics: state-of-the-art methods for looking into the past. G. Trendsenet. 17, 262–272 (2001)CrossRefGoogle Scholar
  16. 16.
    Bagnoli, F., Liò, P., Sguanci, L.: Modeling viral coevolution: HIV multi-clonal persistence and competition dynamics. Phys. A. (in press) (Corrected Proof, Available online November 28, 2005)Google Scholar
  17. 17.
    Bagnoli, F., Bezzi, M.: Speciation as Pattern Formation by Competition in a Smooth Fitness Landscape. Phys. Rev. Lett. 79, 3302–3305 (1997)CrossRefGoogle Scholar
  18. 18.
    Burch, C.L., Chao, L.: Evolvability of an RNA virus determined by its mutational neighborhood. Nature 406, 625–628 (2000)CrossRefGoogle Scholar
  19. 19.
    Chao, L., Davenport, M.P., Forrest, S., Perelson, A.S.: A stochastic model of cytotoxic T cell responses. J. Theor. Biol. 228, 227–240 (2004)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Jenkins, M.G., Rambaut, A., Pybus, O.G., Holmes, E.C.: Rates of molecular evolution in RNA viruses: a quantitative phylogenetic analysis. J. Mol. Evol. 54, 152–161 (2002)CrossRefGoogle Scholar
  21. 21.
    Liò, P., Goldman, N.: Phylogenomics and bioinformatics of SARS-CoV. Trends in Microbiology 12, 106–111 (2004)CrossRefGoogle Scholar
  22. 22.
    Murphy, P.M.: Viral exploitation and subversion of the immune system through chemokine mimicry. Nature Immunology 2, 116–122 (2001)CrossRefGoogle Scholar
  23. 23.
    Lewin, S.R., Sonza, S., Irving, L.B., McDonald, C.F., Mills, J., Crowe, S.M.: Surface CD4 is critical to in vitro HIV infection of human alveolar macrophages. AIDS Res. Hum. Retroviruses 12, 877–883 (1996)CrossRefGoogle Scholar
  24. 24.
    Ometto, L., Zanchetta, M., Cabrelle, A., Esposito, G., Mainardi, M., Chieco-Bianchi, L., De Rossi, A.: Restriction of HIV type 1 infection in macrophages heterozygous for a deletion in the CCchemokine receptor 5 gene. AIDS Res. Hum. Retroviruses 15, 1441–1452 (1999)CrossRefGoogle Scholar
  25. 25.
    Wang, J., Crawford, K., Yuan, M., Wang, H., Gorry, P.R., Gabuzda, D.: Regulation of CC chemokine receptor 5 and CD4 expression and human immunodeficiency virus type 1 replication in human macrophages and microglia by T helper type 2 cytokines. J. Infect. Dis. 185, 885–897 (2002)CrossRefGoogle Scholar
  26. 26.
    Bannert, N., Schenten, D.S., Craig, J., Sodroski, J.: The level of CD4 expression limits infection of primary rhesus monkey macrophages by a T-tropic simian immunodeficiency virus and macrophagetropic human immunodeficiency viruses. J. Virol. 74, 10984–10993 (2000)CrossRefGoogle Scholar
  27. 27.
    Mori, K., Rosenzweig, M., Desrosiers, R.C.: Mechanisms for adaptation of simian immunodeficiency virus to replication in alveolar macrophages. J. Virol. 74, 10852–10859 (2000)CrossRefGoogle Scholar
  28. 28.
    Shields, D.C.: Gene conversions among chemokine genes. Gene 246, 239–245 (2000)CrossRefGoogle Scholar
  29. 29.
    Goh, C.S., Bogan, A.A., Joachimiak, M., Walther, D., Cohen, F.E.: Co-evolution of proteins with their interaction partners. J. Mol. Bio. 299, 283–293 (2000)CrossRefGoogle Scholar
  30. 30.
    Samson, M., LaRosa, G., Libert, F., Paindavoine, P., Detheux, G., Vassay, R., Pandarmentier, M.: The second extracellular loop of CCR5 is the major determinant of ligand specificity. J. Biol. Chem. 272, 24934–24941 (1997)CrossRefGoogle Scholar
  31. 31.
    Muller, V., Maree, A.F.M., de Boer, R.J.: Release of Virus from Lymphoid Tissue Affects Human Immunodeficiency Virus Type 1 and Hepatitis C Virus Kinetics in the Blood. J. Virol. 75, 2597–2603 (2001)CrossRefGoogle Scholar
  32. 32.
    Perelson, A.S., Essunger, P., Cao, Y., Vesanen, M., Hurley, A., Saksela, K., Markowitz, M., Ho, D.D.: Decay characteristics of HIV-1-infected compartments during combination therapy. Nature 387, 188–191 (1997)CrossRefGoogle Scholar
  33. 33.
    Perelson, A.S., Neumann, A.U., Markowitz, M., Leonard, J.M., Ho, D.D.: HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science 271, 1582–1586 (1996)CrossRefGoogle Scholar
  34. 34.
    Di Mascio, M., Dornadula, G., Zhang, H., Sullivan, J., Xu, Y., Kulkosky, J., Pomerantz, R.J., Perelson, A.S.: In a Subset of Subjects on Highly Active Antiretroviral Therapy, Human Immunodeficiency Virus Type 1 RNA in Plasma Decays from 50 to 5 Copies per Milliliter, with a Half-Life of 6 Months. J. Virol. 77, 2271–2275 (2003)CrossRefGoogle Scholar
  35. 35.
    Hlavacek, W.S., Stilianakis, N.I., Notermans, D.W., Danner, S.A., Perelson, A.S.: Influence of follicular dendritic cells on decay of HIV during antiretroviral therapy. PNAS 97, 10966–10971 (2000)CrossRefGoogle Scholar
  36. 36.
    Schnell, J., Johnson, E., Buonocore, L., Rose, J.K.: Construction of a novel virus that targets HIV-1-infected cells and controls HIV-1 infection. Cell 90, 849–857 (1997)CrossRefGoogle Scholar
  37. 37.
    Revilla, T., Garcýa-Ramos, G.: Math. Biosc. 185, 191 (2003)Google Scholar
  38. 38.
    Herbeuval, J.P., Grivel, J.-C., Boasso, A., Hardy, A.W., Chougnet, C., Dolan, M.J., Yagita, H., Lifson, J.D., Shearer, G.M.: CD4+ T-cell death induced by infectious and noninfectious HIV-1: role of type 1 interferon-dependent, TRAIL/DR5-mediated apoptosis. Blood 106, 3524–3531 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Luca Sguanci
    • 1
  • Pietro Liò
    • 2
  • Franco Bagnoli
    • 1
  1. 1.Dept. EnergyUniv. of FlorenceFirenzeItaly
  2. 2.Computer LaboratoryUniversity of CambridgeCambridgeUK

Personalised recommendations