Incorporating Time Delays into the Logical Analysis of Gene Regulatory Networks

  • Heike Siebert
  • Alexander Bockmayr
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4210)

Abstract

Based on the logical description of gene regulatory networks developed by R. Thomas, we introduce an enhanced modelling approach that uses timed automata. It yields a refined qualitative description of the dynamics of the system incorporating information not only on ratios of kinetic constants related to synthesis and decay, but also on the time delays occurring in the operations of the system. We demonstrate the potential of our approach by analysing an illustrative gene regulatory network of bacteriophage λ.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R.: Timed Automata. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 8–22. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  2. 2.
    Alur, R., Henzinger, T., Lafferriere, G., Pappas, G.: Discrete abstractions of hybrid systems. Proceedings of the IEEE (2000)Google Scholar
  3. 3.
    Bengtsson, J., Yi, W.: Timed Automata: Semantics, Algorithms and Tools. In: Desel, J., Reisig, W., Rozenberg, G. (eds.) Lectures on Concurrency and Petri Nets. LNCS, vol. 3098, pp. 87–124. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Bernot, G., Comet, J.-P., Richard, A., Guespin, J.: Application of formal methods to biological regulatory networks: extending Thomas asynchronous logical approach with temporal logic. J. Theor. Biol. 229, 339–347 (2004)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Snoussi, E.H.: Logical identification of all steady states: the concept of feedback loop characteristic states. Bull. Math. Biol. 55, 973–991 (1993)MATHGoogle Scholar
  6. 6.
    Thieffry, D., Thomas, R.: Dynamical behaviour of biological regulatory networks - II. Immunity control in bacteriophage lambda. Bull. Math. Biol. 57, 277–297 (1995)MATHGoogle Scholar
  7. 7.
    Thomas, R., d’Ari, R.: Biological Feedback. CRC Press, Boca Raton (1990)MATHGoogle Scholar
  8. 8.
    Thomas, R., Kaufman, M.: Multistationarity, the basis of cell differentiation and memory. II. Logical analysis of regulatory networks in terms of feedback circuits. Chaos 11, 180–195 (2001)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Heike Siebert
    • 1
  • Alexander Bockmayr
    • 1
  1. 1.DFG Research Center MATHEON, Freie Universität BerlinBerlinGermany

Personalised recommendations