Mutual Information Based Measure for Image Content Characterization

  • Daniela Faur
  • Inge Gavat
  • Mihai Datcu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4177)


An image can be decomposed into different elementary descriptors depending on the observer interest. Similar techniques as used to understand words, regarded as molecules, formed by combining atoms, are proposed to describe images based on their information content. In this paper, we use primitive feature extraction and clustering to code the image information content. Our purpose is to describe the complexity of the information based on the combinational profile of the clustered primitive features using entropic measures like mutual information and Kullback-Leibler divergence. The developed method is demonstrated to asses image complexity for further applications to improve Earth Observation image analysis for sustainable humanitarian crisis response in risk reduction.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Iancu, C., Gavat, I., Datcu, M.: Image disorder Characterization based on rate distortion. In: Marín, R., Onaindía, E., Bugarín, A., Santos, J. (eds.) CAEPIA 2005. LNCS (LNAI), vol. 4177, pp. 261–268. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Daschiel, H., Datcu, M.: Image information mining - Exploration of Earth Observation archives. Geographica Helvetica 58, 154–168 (2003)Google Scholar
  3. 3.
    Datcu, M., Daschiel, H., Pelizzari, A., Quartulli, M., Galoppo, A., Colapicchioni, A., Pastori, M., Seidel, K., Marchetti, P.G., D’Elia, S.: Information mining in remote sensing image archives -Part A: System Concepts. IEEE Trans on Geosciences and Remote Sensing, 2923–2936 (2003)Google Scholar
  4. 4.
    Datcu, M., Stoichescu, D.A., Seidel, K., Iorga, C.: Model fitting and model evidence for multiscale image texture analysis. In: American Institute of Physics, AIP Conference Proceedings, vol. 735, pp. 35–42 (2004)Google Scholar
  5. 5.
    Schrder, M., Walessa, M., Rehrauer, H., Seidel, K., Datcu, M.: Gibbs random field models: a toolbox for spatial information extraction. Computers and Geosciences 26, 423–432 (2000); Mutual Information Based Measure for Image Content Characterization 349CrossRefGoogle Scholar
  6. 6.
    Datcu, M., Seidel, K., D’Elia, S., Marchetti, P.G.: Knowledge-driven Information Mining in Remote-Sensing Image Archives. ESA Bulletin 110, 26–33 (2002)Google Scholar
  7. 7.
    Schröder, M., Rehrauer, H., Seidel, K., Datcu, M.: Interactive learning and probabilistic retrieval in remote sensing image archives. IEEE Trans. on Geosciences and Remote Sensing 38(5), 2288–2298 (2000)CrossRefGoogle Scholar
  8. 8.
    Gonzalez, R., Woods, R.: Digital Image Processing. Prentice-Hall, Englewood Cliffs (2002)Google Scholar
  9. 9.
    Jain, R.: Unified access to universal knowledge: Next generation search experience. Ramesh Jain-White papers (2004)Google Scholar
  10. 10.
    Rao, A., Srihari, R.K., Zhu, L., Zhang, A.: A method for measuring the complexity of image databases. IEEE Trans. on Multimedia 40(2), 160–173 (2002)Google Scholar
  11. 11.
    Schröder, M., Rehrauer, H., Seidel, K., Datcu, M.: Spatial information retrieval from remote sensing images: Part II Gibbs Markov Random Field. IEEE Trans. on Geosciences and Remote Sensing 36, 1446–1455 (1998)CrossRefGoogle Scholar
  12. 12.
    Shannon, L.E.: A mathematical theory of communication. Bell Systems Technical Journal, 27 (1948)Google Scholar
  13. 13.
    Shiryayev, A.M.: Selected works of A. Academic Publishers, New York (1993)Google Scholar
  14. 14.
    Smeulders, A., Worring, M., Gupta, S.S., Jain, A.: Content based image retrieval at the end of early years. IEEE Trans Pattern Anal Machine Intell 22(12) (2000)Google Scholar
  15. 15.
    Spataru, A.: Fondements de la thorie de la transmission de l’information. Lausanne: Presses Polytechniques Romandes (1987)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Daniela Faur
    • 1
  • Inge Gavat
    • 1
  • Mihai Datcu
    • 2
  1. 1.Politehnica University BucharestBucharestRomania
  2. 2.German Aerospace Center DLR OberpfaffenhofenGermany

Personalised recommendations