Combining Human Perception and Geometric Restrictions for Automatic Pedestrian Detection

  • M. Castrillón-Santana
  • Q. C. Vuong
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4177)


Automatic detection systems do not perform as well as human observers, even on simple detection tasks. A potential solution to this problem is training vision systems on appropriate regions of interests (ROIs), in contrast to training on predefined and arbitrarily selected regions. Here we focus on detecting pedestrians in static scenes. Our aim is to answer the following question: Can automatic vision systems for pedestrian detection be improved by training them on perceptually-defined ROIs?


Face Detection Human Observer False Detection Geometric Restriction Pedestrian Detection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Birchfield, S.: Elliptical head tracking using intensity gradients and color histograms. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 232–237 (June 1998)Google Scholar
  2. 2.
    La Cascia, M., Sclaroff, S.: Fast, reliable head tracking under varying illumination: An approach based on registration of texture-mapped 3d models. IEEE Trans. on Pattern Analysis and Machine Intelligence 22(4), 322–336 (2000)CrossRefGoogle Scholar
  3. 3.
    Gosselin, F., Schyns, P.G.: Bubbles: a technique to reveal the use of information in recognition tasks. In: Vision Research, pp. 2261–2271 (2001)Google Scholar
  4. 4.
    Hjelmas, E., Low, B.K.: Face detection: A survey. Computer Vision and Image Understanding 83(3), 236–274 (2001)zbMATHCrossRefGoogle Scholar
  5. 5.
    Intel. Intel Open Source Computer Vision Library, b4.0 (August. 2004),
  6. 6.
    Jones, M.J., Rehg, J.M.: Statistical color models with application to skin detection. Technical Report Series CRL 98/11, Cambridge Research Laboratory (December 1998)Google Scholar
  7. 7.
    Leibe, B., Seemann, E., Schiele, B.: Pedestrian detection in crowded scenes. In: Proceedings of the CVPR 2005 (2005)Google Scholar
  8. 8.
    Lienhart, R., Kuranov, A., Pisarevsky, V.: Empirical analysis of detection cascades of boosted classifiers for rapid object detection. In: Michaelis, B., Krell, G. (eds.) DAGM 2003. LNCS, vol. 2781, pp. 297–304. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Lowe, D.: Distinctive image features from scale-invariant keypoints. International Journal of Comnputer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  10. 10.
    Mikolajczyk, K., Schmid, C., Zisserman, A.: Human detection based on a probabilistic assembly of robust part detectors. In: European Conference on Computer Vision, vol. I, pp. 69–81 (2004)Google Scholar
  11. 11.
    Papageorgiou, C., Oren, M., Poggio, T.: A general framework for object detection. In: Proceedings of the International Conference on Computer Vision, pp. 555–562 (1998)Google Scholar
  12. 12.
    Papageorgiou, C., Poggio, T.: A trainable system for object detection. International Journal of Computer Vision 38(1) (2000)Google Scholar
  13. 13.
    Viola, P., Jones, M.J.: Rapid object detection using a boosted cascade of simple features. In: Computer Vision and Pattern Recognition, pp. 511–518 (2001)Google Scholar
  14. 14.
    Viola, P., Jones, M.J.: Robust real-time face detection. International Journal of Computer Vision 57(2), 151–173 (2004)CrossRefGoogle Scholar
  15. 15.
    Viola, P., Jones, M.J., Snow, D.: Detecting pedestrians using patterns of motion and appearance. In: Proc. of the International Conference on Computer Vision, vol. 2, pp. 734–741 (October 2003)Google Scholar
  16. 16.
    Vuong, Q.C., Hof, A., Bülthoff, H.H., Thornton, I.M.: An advantage for detecting human targets in dynamic versus static composite stimuli. In: 4th annual meeting of the Vision Sciences Society (2004)Google Scholar
  17. 17.
    Yang, M.-H., Kriegman, D., Ahuja, N.: Detecting faces in images: A survey. Transactions on Pattern Analysis and Machine Intelligence 24(1), 34–58 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • M. Castrillón-Santana
    • 1
  • Q. C. Vuong
    • 2
  1. 1.IUSIANI, Edificio Central del Parque Científico-Tecnológico, Campus Universitario de TafiraUniversidad de Las Palmas de Gran CanariaLas PalmasSpain
  2. 2.Max Planck Institute for Biological CyberneticsCognitive & Computational PsychophysicsTübingenGermany

Personalised recommendations