The Research on the Optimal Control Strategy of a Serial Supply Chain Based on GA

  • Min Huang
  • Jianqin Ding
  • W. H. Ip
  • K. L. Yung
  • Zhonghua Liu
  • Xingwei Wang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4221)

Abstract

Determination of optimal control strategy is one of the key factors for a successful supply chain management. This paper focuses on the research of an inventory control strategy of a serial supply chain. First, it proposes an optimization model of an inventory control that is based on the combination of a nonlinear integer programming model and the generally used push/pull control model. Then, the optimal control strategy is ratified by the fusion of genetic algorithm and simulation analysis. Case studies have demonstrated the effectiveness of the method.

Keywords

Supply chain management (SCM) inventory control genetic algorithm push control pull control 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lan, B.X., Zheng, X.N., Xu, X.: Supply Chain Management in E-commerce era. Chinese Journal of Management Science (3) 17 (2000)Google Scholar
  2. 2.
    Lindu, Z.: Theory and Practice of Electronic Commerce, pp. 1–10. People’s Posts & Telecommunications Publishing House, Beijing (2001)Google Scholar
  3. 3.
    Lindu, Z.: Theory and Practice of Supply Chain and Logistics Management, pp. 34–36. Mechanical Industry Publishing House (2003)Google Scholar
  4. 4.
    Gstettner, S., Kuhn, H.: Analysis of Production Control Systems Kanban and CONWIP. International Journal of Production Research 34(11), 3253–3273 (1996)MATHCrossRefGoogle Scholar
  5. 5.
    Deleersnyder, J.L., Hodgson, T.J.: Mueller(-Malek) Hetal, Kanban Control Led Pull System: Analysis Approach. Management Science 35(9), 1079–1091 (1989)CrossRefGoogle Scholar
  6. 6.
    Sarker, B.R., Fitzsimmons, J.A.: The Performance of Push and Pull Systems: A Simulation and Comparative Study. International Journal of Production Research 27(11), 1715–1732 (1989)CrossRefGoogle Scholar
  7. 7.
    Flapper, S.D.P., Miltenburg, G.J., Wijugard, J.: Embedding JIT into MRP. International Journal of Production Research 29(2), 329–341 (1991)CrossRefGoogle Scholar
  8. 8.
    Larsen, N.E., Alting, L.: Criteria for selecting production control philosophy. Production Planning & Control 4(1), 54–68 (1993)CrossRefGoogle Scholar
  9. 9.
    Villa, A., Watanabe, T.: Production management: Beyond the Dichotomy Between “Push” and “Pull”. Computer Integrated Manufacturing Systems 6(1), 53–63 (1993)CrossRefGoogle Scholar
  10. 10.
    Spearman, M.L., Woodruff, D.L., Hopp, W.J.: CONWIP: a Pull Alternative to Kanban. International Journal of Production Research 28(5), 879–894 (1990)CrossRefGoogle Scholar
  11. 11.
    Oscar, R., Adolfo, C.M.: Exploring the Utilization of a CONWIP System for Supply Chain Management. International Journal of Production Economics 83, 195–215 (2003)CrossRefGoogle Scholar
  12. 12.
    Herer, Y.T., Masin, M.: Mathematical Programming Formulation of CONW IP Based Production Lines and Relationships to MRP. International Journal of Production Research 35(4), 1067–1076 (1997)MATHCrossRefGoogle Scholar
  13. 13.
    Gerald, J.B.: Implementing JIT with MRP Creates Hybrid Manufacturing Environment. IE, 14–18 (1988)Google Scholar
  14. 14.
    Michalewicz, Z.: Genetic algorithms + data structure = evolution programs. Seconded. Springer, New York (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Min Huang
    • 1
  • Jianqin Ding
    • 1
  • W. H. Ip
    • 2
  • K. L. Yung
    • 2
  • Zhonghua Liu
    • 1
  • Xingwei Wang
    • 1
  1. 1.Faculty of Information Science and EngineeringNortheastern UniversityP.R. China
  2. 2.Department of Industrial and Systems EngineeringThe Hong Kong Polytechnic UniversityHong Kong

Personalised recommendations