On the Computational Power of Brane Calculi

  • Nadia Busi
  • Roberto Gorrieri
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4220)


Brane calculi are a family of biologically inspired process calculi proposed in [3] for modeling the interactions of dynamically nested membranes.

In [3] a basic calculus for membranes interactions – called Phago/Exo/ Pino – is proposed, whose primitives are inspired by endocytosis and exocytosis. An alternative basic calculus – called Mate/Bud/Drip and inspired by membrane fusion and fission – is also outlined and shown to be encodable in Phago/Exo/Pino in [3].

In this paper we investigate and compare the expressiveness of such two calculi w.r.t. their ability to act as computational devices.

We show that (a fragment of) the Phago/Exo/Pino calculus is Turing powerful, by providing an encoding of Random Access Machines.

On the other hand, we show the impossibility to define a “faithful” encoding of Random Access Machines in the Mate/Bud/Drip calculus, by providing a proof of the decidability of the existence of a divergent computation in Mate/Bud/Drip.


Normal Form Program Counter Internal Membrane Nest Level External Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Busi, N.: On the Computational Power of the Mate/Bud/Drip Brane Calculus: Interleaving vs. Maximal Parallelism. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp. 144–158. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Busi, N., Zavattaro, G.: On the expressive power of movement and restriction in pure mobile ambients. Theoretical Computer Science 322, 477–515 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Cardelli, L.: Brane Calculi - Interactions of biological membranes. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 257–278. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Cardelli, L.: Abstract Machines for System Biology. Draft (2005)Google Scholar
  5. 5.
    Cardelli, L., Gordon, A.D.: Mobile Ambients. Theoretical Computer Science 240(1), 177–213 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Cardelli, L., Păun, G.: An universality result for a (Mem) Brane Calculus based on mate/drip operations. International Journal of Foundations of Computer Science (to appear)Google Scholar
  7. 7.
    Danos, V., Pradalier, S.: Projective Brane Calculus. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 134–148. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Finkel, A., Schnoebelen, P.: Well-Structured Transition Systems Everywhere! Theoretical Computer Science 256, 63–92 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Freund, R.: Asynchronous P Systems and P Systems Working in the Sequential Mode. In: Mauri, G., Păun, G., Jesús Pérez-Jímenez, M., Rozenberg, G., Salomaa, A. (eds.) WMC 2004. LNCS, vol. 3365, pp. 36–62. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Higman, G.: Ordering by divisibility in abstract algebras. In: Proc. London Math. Soc., vol. 2, pp. 236–366 (1952)Google Scholar
  11. 11.
    Ibarra, O.H.: Some Recent Results Concerning Deterministic P Systems. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp. 49–54. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Minsky, M.L.: Computation: finite and infinite machines. Prentice-Hall, Englewood Cliffs (1967)zbMATHGoogle Scholar
  13. 13.
    Păun, G.: Membrane Computing. An Introduction. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  14. 14.
    Păun, G.: Computing with membranes. Journal of Computer and System Sciences 61(1), 108–143 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Priami, C., Regev, A., Silverman, W., Shapiro, E.: Application of a stochastic passing-name calculus to representation and simulation of molecular processes. Information Processing Letter 80, 25–31 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Regev, A., Panina, E.M., Silverman, W., Cardelli, L., Shapiro, E.: BioAmbients: An Abstraction for Biological Compartments. Theoretical Computer Science 325(1), 141–167 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Shepherdson, J.C., Sturgis, J.E.: Computability of recursive functions. Journal of the ACM 10, 217–255 (1963)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Nadia Busi
    • 1
  • Roberto Gorrieri
    • 1
  1. 1.Dipartimento di Scienze dell’InformazioneUniversità di BolognaBolognaItaly

Personalised recommendations