Advertisement

Multiple Representations of Biological Processes

  • Carolyn Talcott
  • David L. Dill
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4220)

Abstract

This paper describes representations of biological processes based on Rewriting Logic and Petri net formalisms and mappings between these representations used in the Pathway Logic Assistant. The mappings are shown to preserve properties of interest. In addition a relevant subnet transformation is defined, that specializes a Petri net model to a specific query to reduce the number of transitions that must be considered when answering the query. The transformation is shown to preserve the query in the sense that no answers are lost.

Keywords

Signal transduction biological process Pathway Logic Rewriting Logic Petri Net 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Eker, S., Knapp, M., Laderoute, K., Lincoln, P., Meseguer, J., Sonmez, K.: Pathway Logic: Symbolic analysis of biological signaling. In: Proceedings of the Pacific Symposium on Biocomputing, pp. 400–412 (2002)Google Scholar
  2. 2.
    Eker, S., Knapp, M., Laderoute, K., Lincoln, P., Talcott, C.: Pathway Logic: Executable models of biological networks. In: Fourth International Workshop on Rewriting Logic and Its Applications (WRLA 2002), Pisa, Italy, 2002, September 19 — 21, 2002. Electronic Notes in Theoretical Computer Science, vol. 71. Elsevier, Amsterdam (2002), http://www.elsevier.nl/locate/entcs/volume71.html Google Scholar
  3. 3.
    Talcott, C., Eker, S., Knapp, M., Lincoln, P., Laderoute, K.: Pathway logic modeling of protein functional domains in signal transduction. In: Proceedings of the Pacific Symposium on Biocomputing (2004)Google Scholar
  4. 4.
    Clavel, M., Durán, F., Eker, S., Lincoln, P., Marti-Oliet, N., Meseguer, J., Talcott, C.: Maude 2.0 Manual (2003), http://maude.cs.uiuc.edu
  5. 5.
    Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.L.: The Maude 2.0 system. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 76–87. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Mason, I.A., Talcott, C.L.: IOP: The InterOperability Platform & IMaude: An interactive extension of Maude. In: Fifth International Workshop on Rewriting Logic and Its Applications (WRLA 2004). Electronic Notes in Theoretical Computer Science. Elsevier, Amsterdam (2004)Google Scholar
  7. 7.
    Kohn, K.W.: Functional capabilities of molecular network components controlling the mammalian g1/s cell cycle phase transition. Oncogene 16, 1065–1075 (1998)CrossRefGoogle Scholar
  8. 8.
    Weng, G., Bhalla, U.S., Iyengar, R.: Complexity in biological signaling systems. Science 284, 92–96 (1999)CrossRefGoogle Scholar
  9. 9.
    Shvartsman, S.Y., Hagan, M.P., Yacoub, A., Dent, P., Wiley, H., Lauffenburger, D.: Autocrine loops with positive feedback enable context-dependent cell signaling. Am. J. Physiol. Cell Physiol. 282, 545–559 (2002)Google Scholar
  10. 10.
    Smolen, P., Baxter, D.A., Byrne, J.H.: Mathematical modeling of gene networks. Neuron 26, 567–580 (2000)CrossRefGoogle Scholar
  11. 11.
    Lok, L.: Software for signaling networks, electronic and cellular. Science STKE PE11 (2002)Google Scholar
  12. 12.
    Rao, C.V., Wolf, D.M., Arkin, A.P.: Control, exploitation and tolerance of intracellular noise. Nature 420, 231–237 (2002)CrossRefGoogle Scholar
  13. 13.
    Endy, D., Brent, R.: Modelling cellular behaviour. Nature 409, 391–395 (2001)CrossRefGoogle Scholar
  14. 14.
    Peterson, J.L.: Petri Nets: Properties, analysis, and applications. Prentice-Hall, Englewood Cliffs (1981)Google Scholar
  15. 15.
    Milner, R.: A Calculus of Communicating Systems. Springer, Heidelberg (1980)zbMATHGoogle Scholar
  16. 16.
    Harel, D.: Statecharts: A visual formalism for complex systems. Science of Computer Programming 8, 231–274 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Meseguer, J.: Conditional Rewriting Logic as a unified model of concurrency. Theoretical Computer Science 96(1), 73–155 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Croes, D., Couche, F., van Helden, J., Wodak, S.: Path finding in metabolic networks: measuring functional distances between enzymes. In: Open Days in Biology, Computer Science and Mathematics JOBIM 2004 (2004)Google Scholar
  19. 19.
    Hofestädt, R.: A Petri net application to model metabolic processes. Syst. Anal. Mod. Simul. 16, 113–122 (1994)zbMATHGoogle Scholar
  20. 20.
    Reddy, V.N., Liebmann, M.N., Mavrovouniotis, M.L.: Qualitative analysis of biochemical reaction systems. Comput. Biol. Med. 26, 9–24 (1996)CrossRefGoogle Scholar
  21. 21.
    Goss, P.J., Peccoud, J.: Quantitative modeling of stochastic systems in molecular biology using stochastic Petri nets. Proc. Natl. Acad. Sci. U S A 95, 6750–6755 (1998)CrossRefGoogle Scholar
  22. 22.
    Küffner, R., Zimmer, R., Lengauer, T.: Pathway analysis in metabolic databases via differential metabolic display (DMD). Bioinformatics 16, 825–836 (2000)CrossRefGoogle Scholar
  23. 23.
    Matsuno, H., Doi, A., Nagasaki, M., Miyano, S.: Hybrid Petri net representation of gene regulatory network. In: Pacific Symposium on Biocomputing, vol. 5, pp. 341–352 (2000)Google Scholar
  24. 24.
    Oliveira, J.S., Bailey, C.G., Jones-Oliveira, J.B., Dixon, D.A., Gull, D.W., Chandler, M.L.: An algebraic-combinatorial model for the identification and mapping of biochemical pathways. Bull. Math. Biol. 63, 1163–1196 (2001)CrossRefGoogle Scholar
  25. 25.
    Genrich, H., Küffner, R., Voss, K.: Executable Petri net models for the analysis of metabolic pathways. Int. J. STTT 3 (2001)Google Scholar
  26. 26.
    Oliveira, J.S., Bailey, C.G., Jones-Oliveira, J.B., Dixon, D.A., Gull, D.W., Chandler, M.L.: A computational model for the identification of biochemical pathways in the Krebs cycle. J. Computational Biology 10, 57–82 (2003)CrossRefGoogle Scholar
  27. 27.
    Zevedei-Oancea, I., Schuster, S.: Topological analysis of metabolic networks based on Petri net theory. Silico Biology 3 (2003)Google Scholar
  28. 28.
    Regev, A., Silverman, W., Shapiro, E.: Representation and simulation of biochemical processes using the pi-calculus process algebra. In: Altman, R.B., Dunker, A.K., Hunter, L., Klein, T.E. (eds.) Pacific Symposium on Biocomputing, vol. 6, pp. 459–470. World Scientific, Singapore (2001)Google Scholar
  29. 29.
    Priami, C., Regev, A., Shapiro, E., Silverman, W.: Application of a stochastic name-passing calculus to representation and simulation of molecular processes. Information Processing Letters (in press), (2001)Google Scholar
  30. 30.
    Calder, M., Vyshemirsky, V., Gilbert, D., Orton, R.: Analysis of signalling pathways using the PRISM model checker. In: Plotkin, G. (ed.) Proceedings of the Third International Conference on Computational Methods in System Biology (CMSB 2005) (2005)Google Scholar
  31. 31.
    Regev, A., Panina, E., Silverman, W., Cardelli, L., Shaprio, E.: Bioambients: An abstraction for biological compartments (2003) (to appear TCS)Google Scholar
  32. 32.
    Nielson, F., Nielson, H.R., Priami, C., Rosa, D.: Control flow analysis for bioambients. In: BioConcur (2003)Google Scholar
  33. 33.
    Kam, N., Cohen, I.R., Harel, D.: The immune system as a reactive system: Modeling t cell activation with statecharts. In: Proc. Visual Languages and Formal Methods (VLFM 2001), pp. 15–22 (2001)Google Scholar
  34. 34.
    Efroni, S., Harel, D., Cohen, I.R.: Towards rigorous comprehension of biological complexity: Modeling, execution and visualization of thymic t-cell maturation. Genome Research (2003); Special issue on Systems Biology (in press)Google Scholar
  35. 35.
    Damm, W., Harel, D.: Breathing life into message sequence charts. Formal Methods in System Design 19(1) (2001)Google Scholar
  36. 36.
    Kam, N., Harel, D., Kugler, H.-J., Marelly, R., Pnueli, A., Hubbard, E.J.A., Stern, M.J.: Formal modeling of C. elegans development: A scenario-based approach. In: Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 4–20. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  37. 37.
    Prez-Jimnez, M., Romero-Campero, F.: Modelling EGFR signalling cascade using continuous membrane systems. In: Plotkin, G. (ed.) Proceedings of the Third International Conference on Computational Methods in System Biology (CMSB 2005) (2005)Google Scholar
  38. 38.
    Fages, F., Soliman, S., Chabrier-Rivier, N.: Modelling and querying interaction networks in the biochemical abstract machine BIOCHAM. Journal of Biological Physics and Chemistry 4(2), 64–73 (2004)CrossRefGoogle Scholar
  39. 39.
    Chabrier-Rivier, N., Chiaverini, M., Danos, V., Fages, F., Schächter, V.: Modeling and querying biomolecular interaction networks. Theoretical Computer Science 351(1), 24–44 (2004)Google Scholar
  40. 40.
    Calzone, L., Chabrier-Rivier, N., Fages, F., Gentils, L., Soliman, S.: Machine learning bio-molecular interactions from temporal logic properties. In: Plotkin, G. (ed.) Proceedings of the Third International Conference on Computational Methods in System Biology (CMSB 2005) (2005)Google Scholar
  41. 41.
    Baral, C., Chancellor, K., Tran, N., Tran, N., Joy, A., Berens, M.: A knowledge based approach for representing and reasoning about signaling networks. Bioinformatics 20, 15–22 (2004)CrossRefGoogle Scholar
  42. 42.
    Shankland, C., Tran, N., Baral, C., Kolch, W.: Reasoning about the ERK signal transduction pathway using BioSigNet-RR. In: Plotkin, G. (ed.) Proceedings of the Third International Conference on Computational Methods in System Biology (CMSB 2005) (2005)Google Scholar
  43. 43.
    Hucka, M., Finney, A., Sauro, H., Bolouri, H., Doyle, J., Kitano, H.: The ERATO Systems Biology Workbench: Enabling Interaction and Exchange between Software Tools for Computational Biology. In: Proceedings of the Pacific Symposium on Biocomputing (2002)Google Scholar
  44. 44.
  45. 45.
  46. 46.
  47. 47.
    Schmidt, A., Hall, A.: Guanine nucleotide exchange factors for rho gtpases: Turning on the switch. Genes Dev. 16, 1587–15609 (2002)CrossRefGoogle Scholar
  48. 48.
    Stehr, M.-O.: A rewriting semantics for algebraic nets. In: Girault, C., Valk, R. (eds.) Petri Nets for System Engineering – A Guide to Modelling, Verification, and Applications. Springer, Heidelberg (2000)Google Scholar
  49. 49.
    Schmidt, K.: LoLA A Low Level Analyser. In: Nielsen, M., Simpson, D. (eds.) ICATPN 2000. LNCS, vol. 1825, pp. 465–474. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  50. 50.
    LoLA: Low Level Petri net Analyzer (2004), http://www.informatik.hu-berlin.de/~kschmidt/lola.html
  51. 51.
    Schmidt, K.: Stubborn sets for standard properties. In: Donatelli, S., Kleijn, J. (eds.) ICATPN 1999. LNCS, vol. 1639, pp. 46–65. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  52. 52.
    Porter, D.: An Interpreter for JLambda (2004), http://mcs.une.edu.au/~iop/Data/Papers/

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Carolyn Talcott
    • 1
  • David L. Dill
    • 2
  1. 1.SRI International 
  2. 2.Stanford University 

Personalised recommendations