Automatic Query Type Identification Based on Click Through Information

  • Yiqun Liu
  • Min Zhang
  • Liyun Ru
  • Shaoping Ma
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4182)

Abstract

We report on a study that was undertaken to better identify users’ goals behind web search queries by using click through data. Based on user logs which contain over 80 million queries and corresponding click through data, we found that query type identification benefits from click through data analysis; while anchor text information may not be so useful because it is only accessible for a small part (about 16%) of practical user queries. We also proposed two novel features extracted from click through data and a decision tree based classification algorithm for identifying user queries. Our experimental evaluation shows that this algorithm can correctly identify the goals for about 80% web search queries.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Broder, A.: A taxonomy of web search. SIGIR Forum 36(2), 3–10 (2002)CrossRefGoogle Scholar
  2. 2.
    Rose, D.E., Levinson, D.: Understanding User Goals in Web Search. In: Proceedings of the 13th World-Wide Web Conference (2004)Google Scholar
  3. 3.
    Craswell, N., Hawking, D.: Overview of the TREC-2002 web track. In: The eleventh Text Retrieval Conference (TREC-2002), NIST (2003)Google Scholar
  4. 4.
    Craswell, N., Hawking, D.: Overview of the TREC-2003 web track. In: The twelfth Text REtrieval Conference (TREC 2003), NIST (2004)Google Scholar
  5. 5.
    Craswell, N., Hawking, D., Robertson, S.: Effective Site Finding using Link Anchor Information. In: Proceedings of ACM SIGIR 2001 (2001)Google Scholar
  6. 6.
    Kraaij, W., Westerveld, T., Hiemstra, D.: The importance of prior probabilities for entry page search. In: Proceedings of ACM SIGIR 2002 (2002)Google Scholar
  7. 7.
    Bharat, K., Henzinger, M.: Improved algorithms for topic distillation in a hyperlinked environment. In: Proceedings of ACM SIGIR 1998 (1998)Google Scholar
  8. 8.
    Lee, U., Liu, Z., Cho, J.: Automatic Identification of User Goals in Web Search. In: Proceedings of the 14th World-Wide Web Conference (2005)Google Scholar
  9. 9.
    Kang, I., Kim, G.: Query type classication for web document retrieval. In: Proceedings of ACM SIGIR 2003 (2003)Google Scholar
  10. 10.
    Craswell, N., Hawking, D.: Overview of the TREC-2004 Web track. In: The Thirteenth Text REtrieval Conference Proceedings (TREC 2004), NIST (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Yiqun Liu
    • 1
  • Min Zhang
    • 1
  • Liyun Ru
    • 2
  • Shaoping Ma
    • 1
  1. 1.State Key Lab of Intelligent Tech. & Sys.Tsinghua UniversityBeijingChina
  2. 2.Sogou IncorporationBeijingChina

Personalised recommendations