Dotted Suffix Trees A Structure for Approximate Text Indexing

  • Luís Pedro Coelho
  • Arlindo L. Oliveira
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4209)


In this work, the problem we address is text indexing for approximate matching. Given a text \(\mathcal{T}\) which undergoes some preprocessing to generate an index, we can later query this index to identify the places where a string occurs up to a certain number of errors k (edition distance). The indexing structure occupies space \(\mathcal{O}(n\log^kn)\) in the average case, independent of alphabet size. This structure can be used to report the existence of a match with k errors in \(\mathcal{O}(3^k m^{k+1})\) and to report the occurrences in \(\mathcal{O}(3^k m^{k+1} + \mbox{\it ed})\) time, where m is the length of the pattern and ed and the number of matching edit scripts. The construction of the structure has time bound by \(\mathcal{O}(kN|\Sigma|)\), where N is the number of nodes in the index and |Σ| the alphabet size.


string algorithms suffix trees approximate text matching text indexing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Weiner, P.: Linear pattern matching algorithms. In: FOCS, pp. 1–11. IEEE, Los Alamitos (1973)Google Scholar
  2. 2.
    Navarro, G.: A guided tour to approximate string matching. ACM Computing Surveys 33 (2001)Google Scholar
  3. 3.
    Maaß, M.G., Nowak, J.: Text indexing with errors. In: Apostolico, A., Crochemore, M., Park, K. (eds.) CPM 2005. LNCS, vol. 3537, pp. 21–32. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Chattaraj, A., Parida, L.: An inexact-suffix-tree-based algorithm for detecting extensible patterns. Theor. Comput. Sci. 335, 3–14 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Cole, R., Gottlieb, L.A., Lewenstein, M.: Dictionary matching and indexing with errors and don’t cares. In: STOC, pp. 91–100 (2004)Google Scholar
  6. 6.
    McCreight, E.: A space-economical suffix tree construction algorithm. J. ACM 23, 262–272 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Apostolico, A., Szpankowski, W.: Self-alignments in words and their applications. J. Algorithms 13, 446–467 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Gusfield, D.: Algorithms on strings, trees, and sequences: computer science and computational biology. Cambridge University Press, New York (1997)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Luís Pedro Coelho
    • 1
  • Arlindo L. Oliveira
    • 1
  1. 1.INESC-ID/IST 

Personalised recommendations