How to Compare Arc-Annotated Sequences: The Alignment Hierarchy

  • Guillaume Blin
  • Hélène Touzet
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4209)


We describe a new unifying framework to express comparison of arc-annotated sequences, which we call alignment of arc-annotated sequences. We first prove that this framework encompasses main existing models, which allows us to deduce complexity results for several cases from the literature. We also show that this framework gives rise to new relevant problems that have not been studied yet. We provide a thorough analysis of these novel cases by proposing two polynomial time algorithms and an NP-completeness proof. This leads to an almost exhaustive study of alignment of arc-annotated sequences.


computational biology RNA structures arc-annotated sequences NP-hardness edit distance algorithm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bernhart, F., Kainen, B.: The book thickness of a graph. J. Comb. Theory Series B 27, 320–331 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Biedl, T.C., Kant, G., Kaufmann, M.: On triangulating planar graphs under the four-connectivity constraint. Algorithmica 19(4), 427–446 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Blin, G., Fertin, G., Rusu, I., Sinoquet, C.: RNA sequences and the EDIT(NESTED, NESTED) problem. technical report - LINA (2003)Google Scholar
  4. 4.
    Crochemore, M., Hermelin, D., Landau, G.M., Vialette, S.: Approximating the 2-interval pattern problem. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 426–437. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Dulucq, S., Touzet, H.: Decomposition algorithms for the tree edit distance problem. Journal of Discrete Algorithms 3(2-4), 448–471 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Evans, P.: Algorithms and Complexity for Annotated Sequences Analysis. PhD thesis, University of Victoria (1999)Google Scholar
  7. 7.
    Herrbach, C., Denise, A., Dulucq, S., Touzet, H.: A polynomial algorithm for comparing RNA secondary structures using a full set of operationsGoogle Scholar
  8. 8.
    Jiang, T., Lin, G., Ma, B., Zhang, K.: A general edit distance between RNA structures. Journal of Computational Biology 9(2), 371–388 (2002)CrossRefGoogle Scholar
  9. 9.
    Jiang, T., Lin, G., Ma, B., Zhang, K.: The longest common subsequence problem for arc-annotated sequences. Journal of Discrete Algorithms, 257–270 (2004)Google Scholar
  10. 10.
    Jiang, T., Wang, L., Zhang, K.: Alignment of trees - an alternative to tree edit. Theoretical Computer Science 143(1), 137–148 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Klein, P.: Computing the edit-distance between unrooted ordered trees. In: 6th European Symposium on Algorithms, pp. 91–102 (1998)Google Scholar
  12. 12.
    Lin, G., Chen, Z.-Z., jiang, T., Wen, J.: The longest common subsequence problem for sequences with nested arc annotations. Journal of Computer and System Sciences 65, 465–480 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Lin, G., Ma, B., Zhang, K.: Edit distance between two rna structures. In: RECOMB, pp. 211–220 (2001)Google Scholar
  14. 14.
    Ma, B., Wang, L., Zhang, K.: Computing similarity between RNA structures. Theoretical Computer Sciences 276, 111–132 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Tai, K.C.: The tree-to-tree correction problem. Journal of the Association for Comput. Machi. 26, 422–433 (1979)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Vialette, S.: On the computational complexity of 2-interval pattern matching. Theoretical Computer Science 312(2-3), 223–249 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance between trees and related problems. SIAM Journal of Computing 18(6), 1245–1262 (1989)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Guillaume Blin
    • 1
  • Hélène Touzet
    • 2
  1. 1.IGM-LabInfo – UMR CNRS 8049 – Université de Marne-la-ValléeMarne-la-ValléeFrance
  2. 2.LIFL – UMR CNRS 8022 – Université Lille 1Villeneuve d’AscqFrance

Personalised recommendations