In advanced XML transformer tools, XSLT rules are generated automatically after relating simple source and target XML documents. In this paper, we generalize this approach for the design of model transformations: transformation rules are derived semi-automatically from an initial prototypical set of interrelated source and target models. These initial model pairs describe critical cases of the model transformation problem in a purely declarative way. The derived transformation rules can be refined later by adding further source-target model pairs. The main advantage of the approach is that transformation designers do not need to learn a new model transformation language, instead they only use the concepts of the source and target modeling languages.


model transformation transformation rule derivation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Eclipse Modeling Framework,
  2. 2.
    Model transformations in practice workshop,
  3. 3.
  4. 4.
  5. 5.
    Cypher, A. (ed.): Watch What I Do: Programming by Demonstration. The MIT Press, Cambridge (1993)Google Scholar
  6. 6.
    Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.): Handbook on Graph Grammars and Computing by Graph Transformation, vol. 2: Applications, Languages and Tools. World Scientific, Singapore (1999)Google Scholar
  7. 7.
    Erwig, M.: Toward the automatic derivation of XML transformations. In: Jeusfeld, M.A., Pastor, Ó. (eds.) ER Workshops 2003. LNCS, vol. 2814, pp. 342–354. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story diagrams: A new graph transformation language based on UML and Java. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) TAGT 1998. LNCS, vol. 1764, Springer, Heidelberg (2000)Google Scholar
  9. 9.
    Königs, A., Schürr, A.: MDI - a rule-based multi-document and tool integration approach. Journal of Software and Systems Modelling (2006), Special Section on Model-based Tool Integration (in Press)Google Scholar
  10. 10.
    Lowden, B.G.T., Robinson, J.: Constructing inter-relational rules for semantic query optimisation. In: Hameurlain, A., Cicchetti, R., Traunmüller, R. (eds.) DEXA 2002. LNCS, vol. 2453, pp. 587–596. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Object Management Group. QVT: Request for Proposal for Queries, Views and Transformations,
  12. 12.
    Shekhar, S., Hamidzadeh, B., Kohli, A., Coyle, M.: Learning transformation rules for semantic query optimization: A data-driven approach. IEEE Trans. Knowl. Data Eng. 5(6), 950–964 (1993)CrossRefGoogle Scholar
  13. 13.
    Siikarla, M., Systä, T.: Transformational pattern system - some assembly required. In: Proc. Intern. Workshop on Graph Transformation and Visual Modelling Techniques (GT-VMT 2006). ENTCS, pp. 57–68. Elsevier, Amsterdam (in Press, 2006)Google Scholar
  14. 14.
    Yan, L.L., Miller, R.J., Haas, L.M., Fagin, R.: Data-driven understanding and refinement of schema mappings. In: Proc. ACM SIGMOD Conference on Management of Data (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Dániel Varró
    • 1
  1. 1.Department of Measurement and Information SystemsBudapest University of Technology and EconomicsBudapest

Personalised recommendations