Using Semantic Networks for Geographic Information Retrieval

  • Johannes Leveling
  • Sven Hartrumpf
  • Dirk Veiel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4022)


This paper describes our work for the participation at the GeoCLEF task of CLEF 2005. We employ multilayered extended semantic networks for the representation of background knowledge, queries, and documents for geographic information retrieval (GIR). In our approach, geographic concepts from the query network are expanded with concepts which are semantically connected via topological, directional, and proximity relations. We started with an existing geographic knowledge base represented as a semantic network and expanded it with concepts automatically extracted from the GEOnet Names Server.

Several experiments for GIR on German documents have been performed: a baseline corresponding to a traditional information retrieval approach; a variant expanding thematic, temporal, and geographic descriptors from the semantic network representation of the query; and an adaptation of a question answering (QA) algorithm based on semantic networks. The second experiment is based on a representation of the natural language description of a topic as a semantic network, which is achieved by a deep linguistic analysis. The semantic network is transformed into an intermediate representation of a database query explicitly representing thematic, temporal, and local restrictions. This experiment showed the best performance with respect to mean average precision: 10.53% using the topic title and description. The third experiment, adapting a QA algorithm, uses a modified version of the QA system InSicht. The system matches deep semantic representations of queries or their equivalent or similar variants to semantic networks for document sentences.


Semantic Relation Semantic Network Query Expansion Mean Average Precision Word Sense 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jones, C.B., Purves, R., Ruas, A., Sanderson, M., Sester, M., van Kreveld, M.J., Weibel, R.: Spatial information retrieval and geographical ontologies – an overview of the SPIRIT project. In: SIGIR 2002, pp. 387–388 (2002)Google Scholar
  2. 2.
    Kunze, C., Wagner, A.: Anwendungsperspektiven des GermaNet, eines lexikalisch-semantischen Netzes für das Deutsche. In: Lemberg, I., Schröder, B., Storrer, A. (eds.) Chancen und Perspektiven computergestützter Lexikographie. Lexicographica Series Maior, vol. 107, pp. 229–246. Niemeyer, Tübingen, Germany (2001)Google Scholar
  3. 3.
    Hartrumpf, S.: Hybrid Disambiguation in Natural Language Analysis. Der Andere Verlag, Osnabrück (2003)Google Scholar
  4. 4.
    Helbig, H.: Knowledge Representation and the Semantics of Natural Language. Springer, Berlin (2006)zbMATHGoogle Scholar
  5. 5.
    Leveling, J., Hartrumpf, S.: University of Hagen at CLEF 2004: Indexing and Translating Concepts for the GIRT Task. In: Peters, C., Clough, P., Gonzalo, J., Jones, G.J.F., Kluck, M., Magnini, B. (eds.) CLEF 2004. LNCS, vol. 3491, pp. 271–282. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Gey, F., Larson, R., Sanderson, M., Joho, H., Clough, P., Petras, V.: GeoCLEF: The CLEF 2005 Cross-Language Geographic Information Retrieval Track Overview. In: Peters, C., Gey, F.C., Gonzalo, J., Müller, H., Jones, G.J.F., Kluck, M., Magnini, B., de Rijke, M., Giampiccolo, D. (eds.) CLEF 2005. LNCS, vol. 4022, pp. 908–919. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Fonseca, F.T., Egenhofer, M.J., Agouris, P., Câmara, G.: Using ontologies for integrated geographic information systems. Transactions in Geographic Information Systems 6(3), 231–257 (2002)Google Scholar
  8. 8.
    Hammer, S., Dickmeiss, A., Levanto, H., Taylor, M.: Zebra – User’s Guide and Reference, Copenhagen (2005)Google Scholar
  9. 9.
    Leveling, J.: University of Hagen at CLEF 2003: Natural Language Access to the GIRT4 Data. In: Peters, C., Gonzalo, J., Braschler, M., Kluck, M. (eds.) CLEF 2003. LNCS, vol. 3237, pp. 412–424. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Hartrumpf, S.: Question Answering Using Sentence Parsing and Semantic Network Matching. In: Peters, C., Clough, P., Gonzalo, J., Jones, G.J.F., Kluck, M., Magnini, B. (eds.) CLEF 2004. LNCS, vol. 3491, pp. 512–521. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Johannes Leveling
    • 1
  • Sven Hartrumpf
    • 1
  • Dirk Veiel
    • 1
  1. 1.Intelligent Information and Communication Systems (IICS)University of Hagen (FernUniversität in Hagen)HagenGermany

Personalised recommendations