Automatic and Manual Annotation Using Flexible Schemas for Adaptation on the Semantic Desktop

  • Alexandra Cristea
  • Maurice Hendrix
  • Wolfgang Nejdl
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4227)

Abstract

Adaptive Hypermedia builds upon the annotation and adaptation of content. As manual annotation has proven to be the main bottleneck, all means for supporting it by reusing automatically generated metadata are helpful. In this paper we discuss two issues. The first is the integration of a generic AH authoring environment MOT into a semantic desktop environment. In this setup, the semantic desktop environment provides a rich source of automatically generated meta-data, whilst MOT provides a convenient way to enhance this meta-data manually, as needed for an adaptive course environment. Secondly, we also consider the issue of source schema heterogeneity, especially during the automatic metadata generation process, as semantic desktop metadata are generated through a lot of different tools and at different times, so that schemas are overlapping and evolving. Explicitly taking into account all versions of these schemas would require a combinatorial explosion of generation rules. This paper investigates a solution to this problem based on malleable schemas, which allow metadata generation rules to flexibly match different versions of schemas, and can thus cope with the heterogeneous and evolving desktop environment.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
  3. 3.
    Brusilovsky, P.: Adaptive Educational Hypermedia: From generation to generation. In: Proceedings of 4th Hellenic Conference on Information and Communication Technologies in Education, Athens, Greece, September 29 - October 3, pp. 19–33 (2004)Google Scholar
  4. 4.
    Buneman, P., Davidson, S., Kosky, A.: Theoretical Aspects of Schema Merging. In: Pirotte, A., Delobel, C., Gottlob, G. (eds.) EDBT 1992. LNCS, vol. 580, pp. 152–167. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  5. 5.
    Chirita, P.-A., Costache, S., Nejdl, W., Paiu, R.: Beagle + + : Semantically enhanced searching and ranking on the desktop. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 348–362. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Chirita, P.A., Gavriloaie, R., Ghita, S., Nejdl, W., Paiu, R.: Activity based metadata for semantic desktop search. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 439–454. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Cristea, A.I., Smits, D., De Bra, P.: Writing MOT, Reading AHA! - converting between an authoring and a delivery system for adaptive educational hypermedia. In: A3EH Workshop, AIED 2005, Amsterdam, The Netherlands (July 2005)Google Scholar
  8. 8.
    Cristea, A.I., De Mooij, A.: Adaptive Course Authoring: My Online Teacher. In: Proceedings of ICT 2003, Papeete, French Polynesia (2003)Google Scholar
  9. 9.
    Cristea, A., De Mooij, A.: AOS: Layered WWW AHS Authoring Model and its corresponding Algebraic Operators. In: Proceedings of WWW 2003, Alternate Education track, Budapest, Hungary. ACM, New York (2003)Google Scholar
  10. 10.
    Cristea, A.I., Aroyo, L.: Adaptive Authoring of Adaptive Educational Hypermedia. In: De Bra, P., Brusilovsky, P., Conejo, R. (eds.) AH 2002. LNCS, vol. 2347, pp. 122–132. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Dong, X., Halevy, A.: Malleable Schemas. In: WebDB 2005, Baltimore Maryland. ACM, New York (2005), uhasselt.be/papers/P-8.pdf Google Scholar
  12. 12.
    Gardarin, G., Dang-Ngoc, T.-T.: Mediating the Semantic Web. 4th journal on extraction and management of knowledge, Clermont Ferrand, Université Blaise Pascal (January 20-23, 2004), http://georges.gardarin.free.fr/Articles/MediatingtheSemanticWeb.pdf
  13. 13.
    Ghita, S., Nejdl, W., Paiu, R.: Semantically rich recommendations in social networks for sharing, exchanging and ranking semantic context. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 293–307. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    He, B., Chang, C.-C.: Statistical schema integration across the deep web. In: Proc. of SIGMOD (2003)Google Scholar
  15. 15.
  16. 16.
    Pottinger, R.A.: Processing Queries and Merging Schemas in Support of Data Integration, PhD thesis, University of Washington, US (2004), www.cs.ubc.ca/~rap/publications/thesis.pdf
  17. 17.
  18. 18.
    Schlieder, T., Naumann, F.: Approximate tree embedding for quering cml data. In: ACM SIGIR Workshop on CML and Information RetrievalGoogle Scholar
  19. 19.
  20. 20.
    Shasha, D., Wang, J., Shan, H., Zhang, K.: Atreegrep: Approximate searching in unordered trees. In: Proc. of International Conference on Scientific and Statistical DB Management, pp. 89–98 (2002)Google Scholar
  21. 21.
  22. 22.
    Simon, B., Dolog, P., Miklós, Z., Olmedilla, D., Sintek, M.: Conceptualising Smart Spaces for Learning. Journal of Interactive Media in Education (9) (2004), (Special Issue on the Educational Semantic Web), http://www-jime.open.ac.uk/2004/9 ISSN: 1365-893X
  23. 23.
    Velegrakis, Y., Miller, R.J., Popa, L.: Mapping Adaptation under Evolving Schemas, with Yannis Velegrakis and Renee J. In: VLDB 2003, Berlin, Germany, pp. 584–595 (September 2003) (full version in VLDB Journal), http://www.almaden.ibm.com/cs/people/lucian/MappingAdaptation_VLDB03.pdf
  24. 24.
  25. 25.
    Zhang, K., Wang, J., Shasha, D.: On the editing distance between undirected acyclic graphs and related problems. In: Proc. of International Symposium on Combinatorial Pattern Matching (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Alexandra Cristea
    • 1
  • Maurice Hendrix
    • 1
    • 2
  • Wolfgang Nejdl
    • 2
  1. 1.Faculty of Mathematics and Computer ScienceEindhoven University of Technology, (TU/e)EindhovenThe Netherlands
  2. 2.L3S Research CenterUniversity of HannoverHannoverGermany

Personalised recommendations