A New Approach to Flux Coupling Analysis of Metabolic Networks

  • Abdelhalim Larhlimi
  • Alexander Bockmayr
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4216)


Flux coupling analysis is a method to identify blocked and coupled reactions in a metabolic network at steady state. We present a new approach to flux coupling analysis, which uses a minimum set of generators of the steady state flux cone. Our method does not require to reconfigure the network by splitting reversible reactions into forward and backward reactions. By distinguishing different types of reactions (irreversible, pseudo-irreversible, fully reversible), we show that reaction coupling relationships can only hold between certain reaction types. Based on this mathematical analysis, we propose a new algorithm for flux coupling analysis.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Burgard, A.P., Nickolaev, E.V., Schilling, C.H., Maranas, C.D.: Flux coupling analysis of genome-scale metabolic network reconstructions. Genome Res. 14, 301–312 (2004)CrossRefGoogle Scholar
  2. 2.
    Fukuda, K., Prodon, A.: Double description method revisited. In: Deza, M., Manoussakis, I., Euler, R. (eds.) CCS 1995. LNCS, vol. 1120, pp. 91–111. Springer, Heidelberg (1996), http://www.ifor.math.ethz.ch/~fukuda/cdd_home/ Google Scholar
  3. 3.
    Klamt, S., Stelling, J.: Combinatorial complexity of pathway analysis in metabolic networks. Mol. Bio. Rep. 29, 233–236 (2002)CrossRefGoogle Scholar
  4. 4.
    Larhlimi, A., Bockmayr, A.: Minimal metabolic behaviors and the reversible metabolic space. Preprint 299, DFG Research Center Matheon (December 2005), http://page.mi.fu-berlin.de/~bockmayr/MMB.pdf
  5. 5.
    Papin, J.A., Stelling, J., Price, N.D., Klamt, S., Schuster, S., Palsson, B.O.: Comparison of network-based pathway analysis methods. Trends Biotechnol. 22(8), 400–405 (2004)CrossRefGoogle Scholar
  6. 6.
    Price, N.D., Reed, J.L., Palsson, B.O.: Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat. Rev. Microbiol. 2(11), 886–897 (2004)CrossRefGoogle Scholar
  7. 7.
    Reed, J.L., Vo, T.D., Schilling, C.H., Palsson, B.Ø.: An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol. 4(9), R54.1–R54.12 (2003)CrossRefGoogle Scholar
  8. 8.
    Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester (1986)MATHGoogle Scholar
  9. 9.
    Schuster, S., Schuster, R.: Detecting strictly detailed balanced sub-networks in open chemical reaction networks. J. Math. Chem. 6, 17–40 (1991)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Stelling, J., Klamt, S., Bettenbrock, K., Schuster, S., Gilles, E.D.: Metabolic network structure determines key aspects of functionality and regulation. Nature 420, 190–193 (2002)CrossRefGoogle Scholar
  11. 11.
    Thiele, I., Vo, T.D., Price, N.D., Palsson, B.Ø.: An expanded metabolic reconstruction of Helicobacter pylori (iIT341 GSM/GPR). J. Bacteriol. 187(16), 5818–5830 (2005)CrossRefGoogle Scholar
  12. 12.
    Vo, T.D., Greenberg, H.J., Palsson, B.Ø.: Reconstruction and functional characterization of the human mitrochondrial metabolic network based on proteomic and biochemical data. J. Biol. Chem. 279(38), 39532–39540 (2004)CrossRefGoogle Scholar
  13. 13.
    Wiback, S.J., Palsson, B.O.: Extreme pathway analysis of human red blood cell metabolism. Biophys. J. 83, 808–818 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Abdelhalim Larhlimi
    • 1
  • Alexander Bockmayr
    • 1
  1. 1.DFG-Research Center Matheon, FB Mathematik und InformatikFreie Universität BerlinBerlinGermany

Personalised recommendations