A Point-Matching Based Algorithm for 3D Surface Alignment of Drug-Sized Molecules

  • Daniel Baum
  • Hans-Christian Hege
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4216)


Molecular shapes play an important role in molecular interactions, e.g., between a protein and a ligand. The ‘outer’ shape of a molecule can be approximated by its solvent excluded surface (SES). In this article we present a new approach to molecular surface alignment which is capable of identifying partial similarities. The approach utilizes an iterative point matching scheme which is applied to the points representing the SES. Our algorithm belongs to the multi-start methods. We first generate a number of initial alignments that are locally optimized by an iterative surface point matching algorithm which tries to maximize the number of matched points while minimizing the distance between the matched points. The algorithm identifies similar surface regions given by the matched surface points. This makes it well suited for multiple alignment of molecular surfaces. The subalgorithm proposed for distributing points uniformly across a surface might be of general interest for the comparison of molecular surfaces.


Voronoi Diagram Geodesic Distance Surface Point Voronoi Cell Molecular Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lemmen, C., Lengauer, T.: Computational methods for the structural alignment of molecules. J. Comput. Aid. Mol. Des. 14, 215–232 (2000)CrossRefGoogle Scholar
  2. 2.
    Ritchie, D.W., Kemp, G.J.L.: Fast computation, rotation, and comparison of low resolution spherical harmonic molecular surfaces. J. Comp. Chem. 20(4), 383–395 (1999)CrossRefGoogle Scholar
  3. 3.
    Goldman, B.B., Wipke, W.T.: Quadratic shape descriptors. 1. rapid superposition of dissimilar molecules using geometrically invariant surface descriptors. J. Chem. Inf. Comp. Sci. 40(3), 644–658 (2000)Google Scholar
  4. 4.
    Cosgrove, D., Bayada, D.M., Johnson, A.P.: A novel method of aligning molecules by local surface shape similarity. J. Comput. Aid. Mol. Des. 14, 573–591 (2000)CrossRefGoogle Scholar
  5. 5.
    Exner, T.E., Keil, M., Brickmann, J.: Pattern recognition strategies for molecular surfaces II. Surface complementarity. J. Comp. Chem. 23, 1188–1197 (2002)CrossRefGoogle Scholar
  6. 6.
    Hofbauer, C.: Molecular Surface Comparison. A Versatile Drug Discovery Tool. PhD thesis, Technische Universität Wien (2004)Google Scholar
  7. 7.
    Exner, T.E., Keil, M., Brickmann, J.: Pattern recognition strategies for molecular surfaces I. Pattern generation using fuzzy set theory. J. Comp. Chem. 23, 1176–1187 (2002)CrossRefGoogle Scholar
  8. 8.
    Zauhar, R.J., Moyna, G., Tian, L., Li, Z., Welsh, W.J.: Shape signatures: a new approach to computer-aided ligand- and receptor-based drug design. J. Med. Chem. 46(26), 5674–5690 (2003)CrossRefGoogle Scholar
  9. 9.
    Stiefl, N., Baumann, K.: Mapping property distributions of molecular surfaces: algorithm and evaluation of a novel 3D quantitative structure-activity relationship technique. J. Med. Chem. 46(8), 1390–1407 (2003)CrossRefGoogle Scholar
  10. 10.
    Bender, A., Mussa, H.Y., Gill, G.S., Glen, R.C.: Molecular surface point environments for virtual screening and the elucidation of binding patterns (MOLPRINT 3D). J. Med. Chem. 47, 6569–6583 (2004)CrossRefGoogle Scholar
  11. 11.
    Akutsu, T.: Protein structure alignment using a graph matching technique. Genome Informatics 6, 1–8 (1995)Google Scholar
  12. 12.
    Kirchner, S.: Ein Approximationsalgorithmus zur Berechnung der Ähnlichkeit dreidimensionaler Punktmengen. Diploma Thesis, Department of Computer Science. Humboldt University, Berlin (2003)Google Scholar
  13. 13.
    Baum, D.: Multiple semi-flexible 3D superposition of drug-sized molecules. In: Berthold, M.R., Glen, R.C., Diederichs, K., Kohlbacher, O., Fischer, I. (eds.) CompLife 2005. LNCS (LNBI), vol. 3695, pp. 198–207. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Totrov, M., Abagyan, R.: The contour-buildup algorithm to calculate the analytical molecular surface. J. Struct. Biol. 116, 138–143 (1995)CrossRefGoogle Scholar
  15. 15.
    AmiraMol, AmiraDeconv - Extensions for Amira 3.1. Zuse Institute Berlin (ZIB) and Mercury Computer Systems - TGS Group (2003),
  16. 16.
    Karypis, G., Kumar, V.: METIS, a Software Package for Partitioning Unstructured Graphs and Computing Fill-Reduced Orderings of Sparse Matrices. University of Minnesota, Department of Computer Science (1998)Google Scholar
  17. 17.
    Deussen, O., Hiller, S., van Overveld, C.W.A.M., Strothotte, T.: Floating points: A method for computing stipple drawings. Comput. Graph. Forum 19(3) (2000)Google Scholar
  18. 18.
    Surazhsky, V., Gotsman, C.: Explicit surface remeshing. In: Symposium on Geometry Processing, pp. 20–30 (2003)Google Scholar
  19. 19.
    Kabsch, W.: A discussion of the solution for the best rotation to relate two sets of vectors. Acta Crystallographica A 34, 827–828 (1978)CrossRefGoogle Scholar
  20. 20.
    Protein Data Bank (PBD),
  21. 21.
    Halgren, T.A.: Merck molecular force field. I-V. J. Comp. Chem. 17(5&6), 490–641 (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Daniel Baum
    • 1
  • Hans-Christian Hege
    • 1
  1. 1.Zuse Institute Berlin (ZIB)Germany

Personalised recommendations