Solvent Effects and Conformational Stability of a Tripeptide

  • Maxim V. Fedorov
  • Stephan Schumm
  • Jonathan M. Goodman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4216)

Abstract

In this work we are trying to gain an insight on the molecular mechanisms of the salt effects on conformational stability of proteins with use of fully atomistic Molecular Dynamics simulations techniques. Such ‘in silico’ approach allows us to obtain quite realistic data on the time and scale resolutions that are unavailable for both ‘in vitro’ and ‘in vivo’ experimental techniques. We investigated a trialanine peptide which is the one of the simplest examples of biomolecules, bearing the essential features of proteins.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Marcus, Y.: Ion solvation. John Wiley and Sons Ltd., Chichester (1985)Google Scholar
  2. 2.
    Dogonadze, R.R., Kalman, A.K.E., Ulstrup, J. (eds.): The Chemical Physics of Solvation. Part A. Elsevier, Amsterdam (1985)Google Scholar
  3. 3.
    Dogonadze, R.R., Kalman, A.K.E., Ulstrup, J. (eds.): The Chemical Physics of Solvation. Part B. Elsevier, Amsterdam (1986)Google Scholar
  4. 4.
    Dogonadze, R., Kalman, E., Kornyshev, A., Ulstrup, J.: The Chemical Physics of Solvation. Part C. Elsevier, Amsterdam (1988)Google Scholar
  5. 5.
    Westhof, E. (ed.): Water and Biological Macromolecules. The Macmillan press Ltd., Basingstoke (1993)Google Scholar
  6. 6.
    Price, N.C., Dwek, R.A., Wormald, M., Ratcliffe, G.R.: Principles and problems in physical chemistry for biochemists. Oxford University Press, Oxford (2001)Google Scholar
  7. 7.
    Hirata, F. (ed.): Molecular theory of solvation. Kluwer Academic Publishers, Dordrecht (2003)Google Scholar
  8. 8.
    Goto, Y., Takahashi, N., Fink, A.L.: Mechanism of acid-induced folding of proteins. Biochemistry 29, 3480–3488 (1990)CrossRefGoogle Scholar
  9. 9.
    Goto, Y., Aimoto, S.: Anion and ph-dependent conformational transition of an amphiphilic polypeptide. Journal of Molecular Biology 218, 387–396 (1991)CrossRefGoogle Scholar
  10. 10.
    Goto, Y., Hagihara, Y.: Mechanism of the conformational transition of melittin. Biochemistry 31, 732–738 (1992)CrossRefGoogle Scholar
  11. 11.
    Cacace, M.G., Landau, E.M., Ramsden, J.J.: The hofmeister series: salt and solvent effects on interfacial phenomena. Quarterly Reviews of Biophysics 30, 241–277 (1997)CrossRefGoogle Scholar
  12. 12.
    Karlstrom, G.: On the effective interaction between an ion and a hydrophobic particle in polar solvents. a step towards an understanding of the hofmeister effect? Physical Chemistry Chemical Physics 5, 3238–3246 (2003)CrossRefGoogle Scholar
  13. 13.
    Rick, S.W.: A reoptimization of the five-site water potential (TIP5P) for use with ewald sums. Journal of Chemical Physics 120, 6085–6093 (2004)CrossRefGoogle Scholar
  14. 14.
    Berendsen, H.J.C., Van der Spoel, D., Van Drunen, R.: Gromacs: A message-passing parallel molecular-dynamics implementation. Computer Physics Communications 91, 43–56 (1995)CrossRefGoogle Scholar
  15. 15.
    Lindahl, E., Hess, B., van der Spoel, D.: Gromacs 3.0: a package for molecular simulation and trajectory analysis. Journal of Molecular Modeling 7, 306–317 (2001)Google Scholar
  16. 16.
    Kaminski, G.A., Friesner, R.A., Tirado-Rives, J., Jorgensen, W.L.: Evaluation and reparametrization of the opls-aa force field for proteins via comparison with accurate quantum chemical calculations on peptides. Journal of Physical Chemistry B 105, 6474–6487 (2001)CrossRefGoogle Scholar
  17. 17.
    Mahoney, M.W., Jorgensen, W.L.: A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions. Journal of Chemical Physics 112, 8910–8922 (2000)CrossRefGoogle Scholar
  18. 18.
    Schaftenaar, G., Noordik, J.H.: Molden: a pre- and post-processing program for molecular and electronic structures. Journal of Computer-Aided Molecular Design 14, 123–134 (2000)CrossRefGoogle Scholar
  19. 19.
    Berendsen, H.J.C., Postma, J.P.M., Van Gunsteren, W.F., Dinola, A., Haak, J.R.: Molecular-dynamics with coupling to an external bath. Journal of Chemical Physics 81, 3684–3690 (1984)CrossRefGoogle Scholar
  20. 20.
    Woutersen, S., Hamm, P.: Structure determination of trialanine in water using polarization sensitive two-dimensional vibrational spectroscopy. Journal of Chemical Physics B 104, 11316–11320 (2000)CrossRefGoogle Scholar
  21. 21.
    Woutersen, S., Hamm, P.: Isotope-edited two-dimensional vibrational spectroscopy of trialanine in aqueous solution. Journal of Chemical Physics 114, 2727–2737 (2001)CrossRefGoogle Scholar
  22. 22.
    Schweitzer-Stenner, R., Eker, F., Huang, Q., Griebenow, K.: Dihedral angles of trialanine in d2o determined by combining ftir and polarized visible raman spectroscopy. Journal of the American Chemical Society 123, 9628–9633 (2001)CrossRefGoogle Scholar
  23. 23.
    Mu, Y.G., Kosov, D.S., Stock, G.: Conformational dynamics of trialanine in water. 2. comparison of amber, charmm, gromos, and opls force fields to nmr and infrared experiments. Journal of Chemical Physics B 107, 5064–5073 (2003)CrossRefGoogle Scholar
  24. 24.
    Lynden-Bell, R.M., Rasaiah, J.C.: From hydrophobic to hydrophilic behaviour: A simulation study of solvation entropy and free energy of simple solutes. Journal of Chemical Physics 107, 1981–1991 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Maxim V. Fedorov
    • 1
  • Stephan Schumm
    • 2
  • Jonathan M. Goodman
    • 1
  1. 1.Unilever Centre for Molecular Science Informatics, Department of ChemistryUniversity of CambridgeCambridgeUK
  2. 2.Unilever Food and Health Research Institute, Unilever R&D VlaardingenVlaardingenThe Netherlands

Personalised recommendations