A Methodology for Building Semantic Web Mining Systems

  • Francesca A. Lisi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4203)

Abstract

In this paper we present a methodology based on interoperability for building Semantic Web Mining systems. In particular we consider the still poorly investigated case of mining the Semantic Web layers of ontologies and rules. We argue that Inductive Logic Programming systems could serve the purpose if they were more compliant with the standards of representation for ontologies and rules in the Semantic Web and/or interoperable with well-established Ontological Engineering tools that support these standards.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press, Cambridge (2003)MATHGoogle Scholar
  2. 2.
    Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American (May 2001)Google Scholar
  3. 3.
    Donini, F.M., Lenzerini, M., Nardi, D., Schaerf, A.: AL-log: Integrating Datalog and Description Logics. Journal of Intelligent Information Systems 10(3), 227–252 (1998)CrossRefGoogle Scholar
  4. 4.
    Gómez-Pérez, A., Fernández-López, M., Corcho, O.: Ontological Engineering. Springer, Heidelberg (2004)Google Scholar
  5. 5.
    Haarslev, V., Möller, R.: Description of the RACER System and its Applications. In: Goble, C.A., McGuinness, D.L., Möller, R., Patel-Schneider, P.F. (eds.) Working Notes of the 2001 International Description Logics Workshop (DL-2001). CEUR Workshop Proceedings, vol. 49 (2001)Google Scholar
  6. 6.
    Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to OWL: The making of a web ontology language. Journal of Web Semantics 1(1), 7–26 (2003)Google Scholar
  7. 7.
    Hustadt, U., Motik, B., Sattler, U.: Reducing SHIQ-description logic to disjunctive datalog programs. In: Dubois, D., Welty, C.A., Williams, M.-A. (eds.) Principles of Knowledge Representation and Reasoning: Proceedings of the Ninth International Conference (KR 2004), pp. 152–162. AAAI Press, Menlo Park (2004)Google Scholar
  8. 8.
    Kietz, J.-U.: Learnability of description logic programs. In: Matwin, S., Sammut, C. (eds.) ILP 2002. LNCS (LNAI), vol. 2583, pp. 117–132. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Kosala, R., Blockeel, H.: Web Mining Research: A Survey. In: SIGKDD: SIGKDD Explorations: Newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining, ACM, 2 (2000)Google Scholar
  10. 10.
    Levy, A.Y., Rousset, M.-C.: Combining Horn rules and description logics in CARIN. Artificial Intelligence 104, 165–209 (1998)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Lisi, F.A., Esposito, F.: Mining the Semantic Web: A Logic-Based Methodology. In: Hacid, M.-S., Murray, N.V., Raś, Z.W., Tsumoto, S. (eds.) ISMIS 2005. LNCS (LNAI), vol. 3488, pp. 102–111. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge discovery. Data Mining and Knowledge Discovery 1(3), 241–258 (1997)CrossRefGoogle Scholar
  13. 13.
    Nienhuys-Cheng, S.-H., de Wolf, R.: Foundations of Inductive Logic Programming. LNCS, vol. 1228. Springer, Heidelberg (1997)Google Scholar
  14. 14.
    Fridman Noy, N., Fergerson, R.W., Musen, M.A.: The Knowledge Model of Protégé-2000: Combining Interoperability and Flexibility. In: Dieng, R., Corby, O. (eds.) EKAW 2000. LNCS (LNAI), vol. 1937, pp. 17–32. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  15. 15.
    Semeraro, G., Esposito, F., Malerba, D., Fanizzi, N., Ferilli, S.: A logic framework for the incremental inductive synthesis of Datalog theories. In: Fuchs, N.E. (ed.) LOPSTR 1997. LNCS, vol. 1463, pp. 300–321. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  16. 16.
    Stumme, G., Hotho, A., Berendt, B.: Semantic Web Mining: State of the art and future directions. Journal of Web Semantics 4(2), 124–143 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Francesca A. Lisi
    • 1
  1. 1.Dipartimento di InformaticaUniversità degli Studi di BariBariItaly

Personalised recommendations