Advertisement

Non Parametric Local Density-Based Clustering for Multimodal Overlapping Distributions

  • Damaris Pascual
  • Filiberto Pla
  • J. Salvador Sánchez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4224)

Abstract

In this work, we present a clustering algorithm to find clusters of different sizes, shapes and densities, to deal with overlapping cluster distributions and background noise. The algorithm is divided in two stages. In a first step, local density is estimated at each data point. In a second stage, a hierarchical approach is used by merging clusters according to the introduced cluster distance, based on heuristic measures about how modes overlap in a distribution. Experimental results on synthetic and real databases show the validity of the method.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proc. of the second International Conference on Knowledge Discovery and Data Mining, Portland, pp. 226–231 (1996)Google Scholar
  2. 2.
    Ertöz, L., Steinbach, M., Kumar, V.: Finding Clusters of Different Sizes, Shapes, and Densities in Noisy, High Dimensional Data. In: Proceedings of Third SIAM International Conference on Data Mining (2003)Google Scholar
  3. 3.
    Figueiredo, M., Jain, A.K.: Unsupervised Learning of Mixture Models. IEEE Trans. On PAMI 24(3), 381–396 (2002)Google Scholar
  4. 4.
    Fred, A.L., Leitao, J.: A New Cluster Isolation Criterion Based on Dissimilarity Increments. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(8), 944–958 (2003)CrossRefGoogle Scholar
  5. 5.
    Guha, S., Rastogi, R., Shim, K.: CURE: An Efficient Clustering Algorithm for Large Databases. In: Proceedings of ACM SIGMOD International Conference on Management of Data, pp. 73–84. ACM, New York (1998)Google Scholar
  6. 6.
    Hinneburg, A., Keim, D.A.: An efficient Approach to Clustering in Large Multimedia Databases with Noise. In: Proc. of the ACM SIGKDD (1998)Google Scholar
  7. 7.
    Karypis, G., Han, E.H., Kumar, V.: Chameleon: A Hierarchical Clustering Algorithm Using Dynamic Modeling. the IEEE Computer Society 32(8), 68–75 (1999)Google Scholar
  8. 8.
    Tran, T.N., Wehrens, R., Buydens, L.M.C.: Knn Density-Based Clustering for High Dimensional Multispectral Images. Analytica Chimica Acta 490, 303–312 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Damaris Pascual
    • 1
  • Filiberto Pla
    • 2
  • J. Salvador Sánchez
    • 2
  1. 1.Dept de Ciencia de la ComputaciónUniversidad de OrienteSantiago de CubaCuba
  2. 2.Dept. Llenguatges i Sistemes InformàticsUniversitat Jaume ICastellóSpain

Personalised recommendations