Automatic Sound Classification for Improving Speech Intelligibility in Hearing Aids Using a Layered Structure

  • Enrique Alexandre
  • Lucas Cuadra
  • Lorena Álvarez
  • Manuel Rosa-Zurera
  • Francisco López-Ferreras
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4224)

Abstract

This paper presents some of our first results in the development of an automatic sound classification algorithm for hearing aids. The goal is to classify the input audio signal into four different categories: speech in quiet, speech in noise, stationary noise and non-stationary noise. In order to make the system more robust, a divide and conquer strategy is proposed, resulting thus in a layered structure. The considered classification algorithms will be based on the Fisher linear discriminant and neural networks. Some results will be given demonstrating the good behavior of the system compared with a classical approach with a four-classes classifier based on neural networks.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Keidser, G.: The relationships between listening conditions and alterative amplification schemes for multiple memory hearing aids. Ear Hear 16, 575–586 (1995)CrossRefGoogle Scholar
  2. Keidser, G.: Selecting different amplification for different listening conditions. J. of the American Academy of Audiology 7, 92–104 (1996)Google Scholar
  3. Büchler, M.: Algorithms for sound classification in hearing instruments. PhD thesis, Swiss Federal Institute of Technology, Zurich (2002)Google Scholar
  4. Nordqvist, P., Leijon, A.: An efficient robust sound classification algorithm for hearing aids. J. Acoustic Soc. Am. 115(6), 3033–3041 (2004)CrossRefGoogle Scholar
  5. Alexandre, E., Rosa, M., Cuadra, L., Gil-Pita, R.: Application of Fisher linear discriminant analysis to speech/music classification. In: AES 120th Convention (2006)Google Scholar
  6. Guaus, E., Batlle, E.: A non-linear rhythm-based style classification for broadcast speech-music discrimination. In: AES 116th Convention (2004)Google Scholar
  7. Lu, L., Zhang, H.J., Jiang, H.: Content analysis for audio classification and segmentation. IEEE Transactions on speech and audio processing 10(7), 504–516 (2002)CrossRefGoogle Scholar
  8. Scheirer, E., Slaney, M.: Construction and evaluation of a robust multifeature speech/music discriminator. In: ICASSP (1997)Google Scholar
  9. Davis, S., Mermelstein, P.: Experiments in syllable-based recognition of continuous speech. IEEE Transactions on Acoustics, Speech and Signal Processing 28, 357–366 (1980)CrossRefGoogle Scholar
  10. Logan, B.: Mel frequency cepstral coefficients for music modeling. In: Int. Symp. Music Information Retrieval, ISMIR (2000)Google Scholar
  11. Tzanetakis, G., Cook, P.: Musical genre classification of audio signals. IEEE Transactions on speech and audio processing 10(5), 293–302 (2002)CrossRefGoogle Scholar
  12. Saunders, J.: Real time discrimination of broadcast speech/music. In: ICASSSP, pp. 993–996 (1996)Google Scholar
  13. ITU-T: Objective measurement of active speech level. Recommendation P.56 (1993) Google Scholar
  14. Batlle, E., Neuschmied, H., Uray, P., Ackerman, G.: Recognition and analysis of audio for copyright protection: the RAA project. Journal of the American Society for Information Science and Technology 55(12), 1084–1091 (2004)CrossRefGoogle Scholar
  15. Fisher, R.: The use of multiple measurements in taxonomic problems. Annals of Eugenics 7, 179–188 (1936)Google Scholar
  16. Haykin, S.: Neural Networks: A comprehensive foundation. Prentice-Hall, Englewood Cliffs (1999)MATHGoogle Scholar
  17. Jain, A.K., Duin, R.P., Mao, J.: Statistical pattern recognition: a review. IEEE Transactions on pattern analysis and machine intelligence 22(1), 4–37 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Enrique Alexandre
    • 1
  • Lucas Cuadra
    • 1
  • Lorena Álvarez
    • 1
  • Manuel Rosa-Zurera
    • 1
  • Francisco López-Ferreras
    • 1
  1. 1.Dept. de Teoría de la Señal y Comunicaciones. Escuela Politécnica SuperiorUniversidad de AlcaláAlcalá de HenaresSpain

Personalised recommendations