Advertisement

Maximum Likelihood Topology Preserving Ensembles

  • Emilio Corchado
  • Bruno Baruque
  • Bogdan Gabrys
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4224)

Abstract

Statistical re-sampling techniques have been used extensively and successfully in the machine learning approaches for generations of classifier and predictor ensembles. It has been frequently shown that combining so called unstable predictors has a stabilizing effect on and improves the performance of the prediction system generated in this way. In this paper we use the re-sampling techniques in the context of a topology preserving map which can be used for scale invariant classification, taking into account the fact that it models the residual after feedback with a family of distributions and finds filters which make the residuals most likely under this model. This model is applied to artificial data sets and compared with a similar version based on the Self Organising Map (SOM).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kohonen, T.: Self-Organization and Associative Memory. Springer, Heidelberg (1984)zbMATHGoogle Scholar
  2. Kohonen, T., Barna, G., Chrisley, R.: Statistical Pattern Recognition with Neural Networks. In: Proceeding of International Joint Conference of Neural Networks, pp. 61–88. IEEE Press, Los Alamitos (1988)Google Scholar
  3. Kohonen, T.: The Self-Organizing Map. Proceedings of the IEEE 78, 1464–1480 (1990)CrossRefGoogle Scholar
  4. Corchado, E., Fyfe, C.: Maximum Likelihood Topology Preserving Algorithms. In: Proceedings of the U.K. Workshop on Computational Intelligence, Birmingham, UK (2002)Google Scholar
  5. Corchado, E., Fyfe, C.: The Scale Invariant Map and Maximum Likelihood Hebbian Learning. In: International Conference on Knowledge-Based & Intelligent Information & Engineering System. IOS Press, Amsterdam (2002)Google Scholar
  6. Corchado, E., MacDonald, D., Fyfe, C.: Maximum and Minimum Likelihood Hebbian Learning for Exploratory Projection Pursuit. Data Mining Knowledge Discovery 8(3), 203–225 (2004)CrossRefMathSciNetGoogle Scholar
  7. Friedman, J., Tukey, J.: A Projection Pursuit Algorithm for Exploratory Data Analysis. IEEE Transaction on Computers 23, 881–890 (1974)zbMATHCrossRefGoogle Scholar
  8. Hyvärinen, A.: Complexity Pursuit: Separating Interesting Components from Time Series. Neural Computation 13(4), 883–898 (2001)zbMATHCrossRefGoogle Scholar
  9. Fyfe, C., Corchado, E.: Maximum likelihood Hebbian rules. ESANN. European Symposium on Artificial Neural Networks (2002) ISBN 2-930307-02-1Google Scholar
  10. Breiman, L.: Bagging Predictors. Machine Learning 24, 123–140 (1996)zbMATHMathSciNetGoogle Scholar
  11. Ruta, D., Gabrys, B.: Theoretical Analysis of the Limits of Majority Voting Errors for Multiple Classifier Systems. Pattern Analysis and Applications 5, 333–350 (2002)CrossRefMathSciNetGoogle Scholar
  12. Schapire, R.E., Freud, Y., Bartlett, P., Lee, W.S.: Boosting the margin: a new explanation for the effectiveness of voting methods. The Annals of Statistics 26(5), 1651–1686 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  13. Gabrys, B.: Learning Hybrid Neuro-Fuzzy Classifier Models From Data: To Combine or not to Combine? Fuzzy Sets and Systems 147, 39–56 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  14. Kuncheva, L.: Combining Pattern Classifiers: Methods and Algorithms. Wiley Interscience, Hoboken (2004)zbMATHCrossRefGoogle Scholar
  15. Ruta, D., Gabrys, B.: Classifier Selection for Majority Voting. Special issue of the journal of information fusion on Diversity in Multiple Classifier Systems 6(1), 63–81 (2005)Google Scholar
  16. Fyfe, C.: A Scale Invariant Map. Network: Computation in Neural Systems 7, 269–275 (1996)CrossRefGoogle Scholar
  17. Petrakieva, L., Fyfe, C.: Bagging and Bumping Self-organising Maps. Computing and Information Systems (2003)Google Scholar
  18. Gabrys, B., Baruque, B., Corchado, E.: Outlier Resistant PCA Ensembles. In: Gabrys, B., Howlett, R.J., Jain, L.C. (eds.) KES 2006. LNCS (LNAI), vol. 4253, pp. 432–440. Springer, Heidelberg (2006) (to appear)CrossRefGoogle Scholar
  19. Gabrys, B.: Combining Neuro-Fuzzy Classifiers for Improved Generalisation and Reliability. In: Proceedings of the Int. Joint Conference on Neural Networks (IJCNN 2002) a part of the WCCI 2002 Congress, Honolulu, USA, May 2002, pp. 2410–2415 (2002) ISBN: 0-7803-7278-6Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Emilio Corchado
    • 1
  • Bruno Baruque
    • 1
  • Bogdan Gabrys
    • 2
  1. 1.Department of Civil EngineeringUniversity of BurgosSpain
  2. 2.Computational Intelligence Research GroupBournemouth UniversityUnited Kingdom

Personalised recommendations