A Sequent Calculus for Type Theory

  • Stéphane Lengrand
  • Roy Dyckhoff
  • James McKinna
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4207)


Based on natural deduction, Pure Type Systems (PTS) can express a wide range of type theories. In order to express proof-search in such theories, we introduce the Pure Type Sequent Calculi (PTSC) by enriching a sequent calculus due to Herbelin, adapted to proof-search and strongly related to natural deduction.

PTSC are equipped with a normalisation procedure, adapted from Herbelin’s and defined by local rewrite rules as in Cut-elimination, using explicit substitutions. It satisfies Subject Reduction and it is confluent. A PTSC is logically equivalent to its corresponding PTS, and the former is strongly normalising if and only if the latter is.

We show how the conversion rules can be incorporated inside logical rules (as in syntax-directed rules for type checking), so that basic proof-search tactics in type theory are merely the root-first application of our inference rules.


Type theory PTS sequent calculus proof-search strong normalisation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Bar92]
    Barendregt, H.P.: Lambda calculi with types. In: Abramsky, S., Gabby, D.M., Maibaum, T.S.E. (eds.) Hand. Log. Comput. Sci., vol. 2, ch.2, pp. 117–309. Oxford University Press, Oxford (1992)Google Scholar
  2. [BG99]
    Bloo, R., Geuvers, H.: Explicit substitution: on the edge of strong normalization. Theoret. Comput. Sci. 211(1-2), 375–395 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  3. [Blo01]
    Bloo, R.: Pure type systems with explicit substitution. Math. Structures in Comput. Sci. 11(1), 3–19 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  4. [BR95]
    Bloo, R., Rose, K.H.: Preservation of strong normalisation in named lambda calculi with explicit substitution and garbage collection. In: Computing Science in the Netherlands (CSN 1995), Koninklijke Jaarbeurs, Utrecht, pp. 62–72 (1995)Google Scholar
  5. [CH88]
    Coquand, T., Huet, G.: The calculus of constructions. Inf. Comput. 76(2–3), 95–120 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  6. [Coq]
    The Coq Proof Assistant,
  7. [Dow93]
    Dowek, G.: A complete proof synthesis method for type systems of the cube. J. Logic Comput. (1993)Google Scholar
  8. [DP99a]
    Dyckhoff, R., Pinto, L.: Proof search in constructive logics. In: Sets and proofs (Leeds, 1997), pp. 53–65. Cambridge Univ. Press, Cambridge (1999)Google Scholar
  9. [DP99b]
    Dyckhoff, R., Pinto, L.: Permutability of proofs in intuitionistic sequent calculi. Theoret. Comput. Sci. 212(1–2), 141–155 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  10. [DU03]
    Dyckhoff, R., Urban, C.: Strong normalization of Herbelin’s explicit substitution calculus with substitution propagation. J. Logic Comput. 13(5), 689–706 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  11. [Gen35]
    Gentzen, G.: Investigations into logical deduction. In: Szabo, M.E. (ed.) Gentzen collected works, pp. 68–131. North Holland, Amsterdam (1969) (1935)Google Scholar
  12. [GR03]
    Gutiérrez, F., Ruiz, B.: Cut elimination in a class of sequent calculi for pure type systems. In: de Queiroz, R., Pimentel, E., Figueiredo, L. (eds.) ENTCS, vol. 84. Elsevier, Amsterdam (2003)Google Scholar
  13. [Her94]
    Herbelin, H.: A lambda-calculus structure isomorphic to Gentzen-style sequent calculus structure. In: Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933, pp. 61–75. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  14. [Her95]
    Herbelin, H.: Séquents quón calcule. PhD thesis, Université Paris 7 (1995)Google Scholar
  15. [Hue89]
    Huet, G.: The constructive engine. World Scientific Publishing, Commemorative Volume for Gift Siromoney (1989)Google Scholar
  16. [Kik04]
    Kikuchi, K.: A direct proof of strong normalization for an extended Herbelin’s calculus. In: Kameyama, Y., Stuckey, P.J. (eds.) FLOPS 2004. LNCS, vol. 2998, pp. 244–259. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. [KL80]
    Kamin, S., Lévy, J.-J.: Attempts for generalizing the recursive path orderings. Handwritten paper, University of Illinois (1980)Google Scholar
  18. [Kri]
    Krivine, J.-L.: Un interpréteur du λ-calcul., available at:
  19. [LDM]
    Lengrand, S., Dyckhoff, R., McKinna, J.: A sequent calculus for type theory - longer version, available at:
  20. [LP92]
    Luo, Z., Pollack, R.: LEGO Proof Development System: User’s Manual. Technical Report ECS-LFCS-92-211, School of Informatics, University of Edinburgh (1992)Google Scholar
  21. [MNPS91]
    Miller, D., Nadathur, G., Pfenning, F., Scedrov, A.: Uniform proofs as a foundation for logic programming. Ann. Pure Appl. Logic 51, 125–157 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  22. [Mun01]
    Munoz, C.: Proof-term synthesis on dependent-type systems via explicit substitutions. Theor. Comput. Sci. 266(1-2), 407–440 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  23. [PD00]
    Pinto, L., Dyckhoff, R.: Sequent calculi for the normal terms of the ΛΠ and ΛΠΣ calculi. In: Galmiche, D. (ed.) ENTCS, vol. 17. Elsevier, Amsterdam (2000)Google Scholar
  24. [Pol98]
    Poll, E.: Expansion Postponement for Normalising Pure Type Systems. J. Funct. Programming 8(1), 89–96 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  25. [Pra65]
    Prawitz, D.: Natural deduction. a proof-theoretical study. Acta Universitatis Stockholmiensis, vol. 3. Almqvist & Wiksell (1965)Google Scholar
  26. [JMP94]
    van Benthem Jutting, B., McKinna, J., Pollack, R.: Checking Algorithms for Pure Type Systems. In: Barendregt, H., Nipkow, T. (eds.) TYPES 1993. LNCS, vol. 806. Springer, Heidelberg (1994)Google Scholar
  27. [Zuc74]
    Zucker, J.: The correspondence between cut-elimination and normalization. Annals of Mathematical Logic 7, 1–156 (1974)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Stéphane Lengrand
    • 1
    • 2
  • Roy Dyckhoff
    • 1
  • James McKinna
    • 1
  1. 1.School of Computer ScienceUniversity of St AndrewsScotland
  2. 2.PPSFrance

Personalised recommendations