Infinite State Model-Checking of Propositional Dynamic Logics

  • Stefan Göller
  • Markus Lohrey
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4207)


Model-checking problems for PDL (propositional dynamic logic) and its extension PDL ∩  (which includes the intersection operator on programs) over various classes of infinite state systems (BPP, BPA, pushdown systems, prefix-recognizable systems) are studied. Precise upper and lower bounds are shown for the data/expression/combined complexity of these model-checking problems.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alur, R., Benedikt, M., Etessami, K., Godefroid, P., Reps, T.W., Yannakakis, M.: Analysis of recursive state machines. ACM Trans. Program. Lang. Syst. 27(4), 786–818 (2005)CrossRefGoogle Scholar
  2. 2.
    Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata: Application to model-checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997)Google Scholar
  3. 3.
    Blumensath, A.: Prefix-recognizable graphs and monadic second-order logic. Tech. Rep. 2001-06, RWTH Aachen, Germany (2001)Google Scholar
  4. 4.
    Cachat, T.: Uniform solution of parity games on prefix-recognizable graphs. ENTCS 68(6) (2002)Google Scholar
  5. 5.
    Caucal, D.: On infinite transition graphs having a decidable monadic theory. Theor. Comput. Sci. 290(1), 79–115 (2002)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. J. Assoc. Comput. Mach. 28(1), 114–133 (1981)MATHMathSciNetGoogle Scholar
  7. 7.
    Danecki, R.: Nondeterministic propositional dynamic logic with intersection is decidable. In: Skowron, A. (ed.) SCT 1984. LNCS, vol. 208, pp. 34–53. Springer, Heidelberg (1985)Google Scholar
  8. 8.
    Esparza, J.: On the decidabilty of model checking for several mu-calculi and petri nets. In: Tison, S. (ed.) CAAP 1994. LNCS, vol. 787, pp. 115–129. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  9. 9.
    Esparza, J., Kucera, A., Schwoon, S.: Model checking LTL with regular valuations for pushdown systems. Inf. Comput. 186(2), 355–376 (2003)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. J. Comput. Syst. Sci. 18(2), 194–211 (1979)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Göller, S., Lohrey, M.: Infinite State Model-Checking of Propositional Dynamic Logics Technical Report 2006/04, University of Stuttgart, Germany (2006), fi/TR2006-04/Google Scholar
  12. 12.
    Harel, D.: Recurring dominoes: making the highly undecidable highly understandable. Ann. Discrete Math. 24, 51–72 (1985)MATHMathSciNetGoogle Scholar
  13. 13.
    Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. Foundations of computing. MIT Press, Cambridge (2000)MATHGoogle Scholar
  14. 14.
    Kupferman, O., Piterman, N., Vardi, M.: Model checking linear properties of prefix-recognizable systems. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 371–385. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Kupferman, O., Vardi, M.Y.: An automata-theoretic approach to reasoning about infinite-state systems. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 36–52. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  16. 16.
    Lange, M.: Model checking propositional dynamic logic with all extras. J. Appl. Log. 4(1), 39–49 (2005)CrossRefGoogle Scholar
  17. 17.
    Lange, M., Lutz, C.: 2-Exptime lower bounds for propositional dynamic logics with intersection. J. Symb. Log. 70(4), 1072–1086 (2005)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Löding, C., Serre, O.: Propositional dynamic logic with recursive programs. In: Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921, pp. 292–306. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Lugiez, D., Schnoebelen, P.: The regular viewpoint on PA-processes. Theor. Comput. Sci. 274(1–2), 89–115 (2002)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Mayr, R.: Strict lower bounds for model checking BPA. ENTCS 18 (1998)Google Scholar
  21. 21.
    Mayr, R.: Process rewrite systems. Inf. Comput. 156(1), 264–286 (2000)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Mayr, R.: Decidability of model checking with the temporal logic EF. Theor. Comput. Sci. 256(1-2), 31–62 (2001)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Muller, D., Schupp, P.: Alternating automata on infinite trees. Theor. Comput. Sci. 54(2-3), 267–276 (1987)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Papadimitriou, C.H.: Computational Complexity. Addison Wesley, Reading (1994)MATHGoogle Scholar
  25. 25.
    Thomas, W.: Some perspectives of infinite-state verification. In: Peled, D.A., Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707, pp. 3–10. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  26. 26.
    Vardi, M.Y.: The complexity of relational query languages (extended abstract). In: Proc. STOC 1982, pp. 137–146. ACM Press, New York (1982)Google Scholar
  27. 27.
    Vardi, M.Y.: Reasoning about the past with two-way automata. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 628–641. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  28. 28.
    Walukiewicz, I.: Model checking CTL properties of pushdown systems. In: Kapoor, S., Prasad, S. (eds.) FST TCS 2000. LNCS, vol. 1974, pp. 127–138. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  29. 29.
    Walukiewicz, I.: Pushdown processes: Games and model-checking. Inf. Comput. 164(2), 234–263 (2001)MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Wöhrle, S.: Decision problems over infinite graphs: Higher-order pushdown systems and synchronized products. Dissertation, RWTH Aachen, Germany (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Stefan Göller
    • 1
  • Markus Lohrey
    • 1
  1. 1.FMI, Universität StuttgartGermany

Personalised recommendations