Infinite State Model-Checking of Propositional Dynamic Logics

  • Stefan Göller
  • Markus Lohrey
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4207)

Abstract

Model-checking problems for PDL (propositional dynamic logic) and its extension PDL ∩  (which includes the intersection operator on programs) over various classes of infinite state systems (BPP, BPA, pushdown systems, prefix-recognizable systems) are studied. Precise upper and lower bounds are shown for the data/expression/combined complexity of these model-checking problems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., Benedikt, M., Etessami, K., Godefroid, P., Reps, T.W., Yannakakis, M.: Analysis of recursive state machines. ACM Trans. Program. Lang. Syst. 27(4), 786–818 (2005)CrossRefGoogle Scholar
  2. 2.
    Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata: Application to model-checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997)Google Scholar
  3. 3.
    Blumensath, A.: Prefix-recognizable graphs and monadic second-order logic. Tech. Rep. 2001-06, RWTH Aachen, Germany (2001)Google Scholar
  4. 4.
    Cachat, T.: Uniform solution of parity games on prefix-recognizable graphs. ENTCS 68(6) (2002)Google Scholar
  5. 5.
    Caucal, D.: On infinite transition graphs having a decidable monadic theory. Theor. Comput. Sci. 290(1), 79–115 (2002)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. J. Assoc. Comput. Mach. 28(1), 114–133 (1981)MATHMathSciNetGoogle Scholar
  7. 7.
    Danecki, R.: Nondeterministic propositional dynamic logic with intersection is decidable. In: Skowron, A. (ed.) SCT 1984. LNCS, vol. 208, pp. 34–53. Springer, Heidelberg (1985)Google Scholar
  8. 8.
    Esparza, J.: On the decidabilty of model checking for several mu-calculi and petri nets. In: Tison, S. (ed.) CAAP 1994. LNCS, vol. 787, pp. 115–129. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  9. 9.
    Esparza, J., Kucera, A., Schwoon, S.: Model checking LTL with regular valuations for pushdown systems. Inf. Comput. 186(2), 355–376 (2003)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. J. Comput. Syst. Sci. 18(2), 194–211 (1979)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Göller, S., Lohrey, M.: Infinite State Model-Checking of Propositional Dynamic Logics Technical Report 2006/04, University of Stuttgart, Germany (2006), ftp://ftp.informatik.uni-stuttgart.de/pub/library/ncstrl.ustuttgart fi/TR2006-04/Google Scholar
  12. 12.
    Harel, D.: Recurring dominoes: making the highly undecidable highly understandable. Ann. Discrete Math. 24, 51–72 (1985)MATHMathSciNetGoogle Scholar
  13. 13.
    Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. Foundations of computing. MIT Press, Cambridge (2000)MATHGoogle Scholar
  14. 14.
    Kupferman, O., Piterman, N., Vardi, M.: Model checking linear properties of prefix-recognizable systems. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 371–385. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Kupferman, O., Vardi, M.Y.: An automata-theoretic approach to reasoning about infinite-state systems. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 36–52. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  16. 16.
    Lange, M.: Model checking propositional dynamic logic with all extras. J. Appl. Log. 4(1), 39–49 (2005)CrossRefGoogle Scholar
  17. 17.
    Lange, M., Lutz, C.: 2-Exptime lower bounds for propositional dynamic logics with intersection. J. Symb. Log. 70(4), 1072–1086 (2005)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Löding, C., Serre, O.: Propositional dynamic logic with recursive programs. In: Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921, pp. 292–306. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Lugiez, D., Schnoebelen, P.: The regular viewpoint on PA-processes. Theor. Comput. Sci. 274(1–2), 89–115 (2002)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Mayr, R.: Strict lower bounds for model checking BPA. ENTCS 18 (1998)Google Scholar
  21. 21.
    Mayr, R.: Process rewrite systems. Inf. Comput. 156(1), 264–286 (2000)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Mayr, R.: Decidability of model checking with the temporal logic EF. Theor. Comput. Sci. 256(1-2), 31–62 (2001)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Muller, D., Schupp, P.: Alternating automata on infinite trees. Theor. Comput. Sci. 54(2-3), 267–276 (1987)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Papadimitriou, C.H.: Computational Complexity. Addison Wesley, Reading (1994)MATHGoogle Scholar
  25. 25.
    Thomas, W.: Some perspectives of infinite-state verification. In: Peled, D.A., Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707, pp. 3–10. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  26. 26.
    Vardi, M.Y.: The complexity of relational query languages (extended abstract). In: Proc. STOC 1982, pp. 137–146. ACM Press, New York (1982)Google Scholar
  27. 27.
    Vardi, M.Y.: Reasoning about the past with two-way automata. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 628–641. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  28. 28.
    Walukiewicz, I.: Model checking CTL properties of pushdown systems. In: Kapoor, S., Prasad, S. (eds.) FST TCS 2000. LNCS, vol. 1974, pp. 127–138. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  29. 29.
    Walukiewicz, I.: Pushdown processes: Games and model-checking. Inf. Comput. 164(2), 234–263 (2001)MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Wöhrle, S.: Decision problems over infinite graphs: Higher-order pushdown systems and synchronized products. Dissertation, RWTH Aachen, Germany (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Stefan Göller
    • 1
  • Markus Lohrey
    • 1
  1. 1.FMI, Universität StuttgartGermany

Personalised recommendations