Collapsibility in Infinite-Domain Quantified Constraint Satisfaction

  • Manuel Bodirsky
  • Hubie Chen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4207)


In this article, we study the quantified constraint satisfaction problem (QCSP) over infinite domains. We develop a technique called collapsibility that allows one to give strong complexity upper bounds on the QCSP. This technique makes use of both logical and universal-algebraic ideas. We give applications illustrating the use of our technique.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bodirsky, M.: Constraint satisfaction with infinite domains. Ph.D. thesis, Humboldt-Universität zu Berlin (2004)Google Scholar
  2. 2.
    Bodirsky, M.: The core of a countably categorical structure. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 100–110. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Bodirsky, M., Chen, H.: Quantified equality constraints (manuscript, 2006)Google Scholar
  4. 4.
    Bodirsky, M., Kára, J.: The complexity of equality constraint languages. In: Grigoriev, D., Harrison, J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967, pp. 114–126. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Boerner, F., Bulatov, A., Krokhin, A., Jeavons, P.: Quantified constraints: Algorithms and complexity. In: Baaz, M., Makowsky, J.A. (eds.) CSL 2003. LNCS, vol. 2803, pp. 58–70. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Bulatov, A., Dalmau, V.: A simple algorithm for Mal’tsev constraints. SIAM J. Comp. (to appear)Google Scholar
  7. 7.
    Bulatov, A., Krokhin, A., Jeavons, P.G.: Classifying the complexity of constraints using finite algebras. SIAM Journal on Computing 34, 720–742 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Bulatov, A., Krokhin, A., Jeavons, P.: The complexity of maximal constraint languages. In: Proceedings of STOC 2001, pp. 667–674 (2001)Google Scholar
  9. 9.
    Bulatov, A.A.: A dichotomy theorem for constraints on a three-element set. In: FOCS 2002, pp. 649–658 (2002)Google Scholar
  10. 10.
    Chen, H.: The computational complexity of quantified constraint satisfaction. Ph.D. thesis, Cornell University (August 2004)Google Scholar
  11. 11.
    Chen, H.: Collapsibility and consistency in quantified constraint satisfaction. In: AAAI, pp. 155–160 (2004)Google Scholar
  12. 12.
    Chen, H.: Quantified constraint satisfaction, maximal constraint languages, and symmetric polymorphisms. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 315–326. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Dalmau, V.: Generalized majority-minority operations are tractable. In: LICS, pp. 438–447 (2005)Google Scholar
  14. 14.
    Feder, T., Vardi, M.: The computational structure of monotone monadic SNP and constraint satisfaction: A study through Datalog and group theory. SIAM Journal on Computing 28, 57–104 (1999)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Gottlob, G., Greco, G., Scarcello, F.: The complexity of quantified constraint satisfaction problems under structural restrictions. In: IJCAI 2005 (2005)Google Scholar
  16. 16.
    Hodges, W.: A shorter model theory. Cambridge University Press, Cambridge (1997)zbMATHGoogle Scholar
  17. 17.
    Jeavons, P., Cohen, D., Cooper, M.: Constraints, consistency and closure. AI 101(1-2), 251–265 (1998)zbMATHMathSciNetGoogle Scholar
  18. 18.
    Kolaitis, P.G., Vardi, M.Y.: Conjunctive-query containment and constraint satisfaction. In: Proceedings of PODS 1998, pp. 205–213 (1998)Google Scholar
  19. 19.
    Kozen, D.: Positive first-order logic is NP-complete. IBM Journal of Research and Development 25(4), 327–332 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Pan, G., Vardi, M.: Fixed-parameter hierarchies inside PSPACE. In: LICS 2006 (to appear, 2006)Google Scholar
  21. 21.
    Stockmeyer, L.J., Meye, A.R.: Word problems requiring exponential time: Preliminary report. In: STOC, pp. 1–9 (1973)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Manuel Bodirsky
    • 1
  • Hubie Chen
    • 2
  1. 1.Institut für InformatikHumboldt-Universität zu BerlinBerlinGermany
  2. 2.Departament de TecnologiaUniversitat Pompeu FabraBarcelonaSpain

Personalised recommendations