Verification of Ptime Reducibility for System F Terms Via Dual Light Affine Logic

  • Vincent Atassi
  • Patrick Baillot
  • Kazushige Terui
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4207)

Abstract

In a previous work we introduced Dual Light Affine Logic (DLAL) ([BT04]) as a variant of Light Linear Logic suitable for guaranteeing complexity properties on lambda-calculus terms: all typable terms can be evaluated in polynomial time and all Ptime functions can be represented. In the present work we address the problem of typing lambda-terms in second-order DLAL. For that we give a procedure which, starting with a term typed in system F, finds all possible ways to decorate it into a DLAL typed term. We show that our procedure can be run in time polynomial in the size of the original Church typed system F term.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [ABT06]
    Atassi, V., Baillot, P., Terui, K.: Verification of Ptime reducibility for system F terms via Dual Light Affine Logic. Technical Report HAL ccsd-00021834 (July 2006)Google Scholar
  2. [Ama05]
    Amadio, R.: Synthesis of max-plus quasi-interpretations. Fundamenta Informaticae 65, 29–60 (2005)MATHMathSciNetGoogle Scholar
  3. [AR02]
    Asperti, A., Roversi, L.: Intuitionistic light affine logic. ACM Transactions on Computational Logic 3(1), 1–39 (2002)CrossRefMathSciNetGoogle Scholar
  4. [Ata05]
    Atassi, V.: Inférence de type en logique linéaire élémentaire. Master’s thesis, Université Paris 13 (2005)Google Scholar
  5. [Bai02]
    Baillot, P.: Checking polynomial time complexity with types. In: Proceedings of IFIP TCS 2002, Montreal. Kluwer Academic Press, Dordrecht (2002)Google Scholar
  6. [Bai04]
    Baillot, P.: Type inference for light affine logic via constraints on words. Theoretical Computer Science 328(3), 289–323 (2004)MATHCrossRefMathSciNetGoogle Scholar
  7. [BC92]
    Bellantoni, S., Cook, S.: New recursion-theoretic characterization of the polytime functions. Computational Complexity 2, 97–110 (1992)MATHCrossRefMathSciNetGoogle Scholar
  8. [BT04]
    Baillot, P., Terui, K.: Light types for polynomial time computation in lambda-calculus. In: Proceedings LICS 2004. IEEE Computer Society Press, Los Alamitos (2004)Google Scholar
  9. [BT05]
    Baillot, P., Terui, K.: A feasible algorithm for typing in elementary affine logic. In: Urzyczyn, P. (ed.) TLCA 2005. LNCS, vol. 3461, pp. 55–70. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. [CDLRdR05]
    Coppola, P., Dal Lago, U., Ronchi Della Rocca, S.: Elementary affine logic and the call-by-value lambda calculus. In: Urzyczyn, P. (ed.) TLCA 2005. LNCS, vol. 3461, pp. 131–145. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. [CM01]
    Coppola, P., Martini, S.: Typing lambda-terms in elementary logic with linear constraints. In: Abramsky, S. (ed.) TLCA 2001. LNCS, vol. 2044. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. [CRdR03]
    Coppola, P., Ronchi Della Rocca, S.: Principal typing in Elementary Affine Logic. In: Hofmann, M.O. (ed.) TLCA 2003. LNCS, vol. 2701, pp. 90–104. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. [DJ03]
    Danos, V., Joinet, J.-B.: Linear logic and elementary time. Information and Computation 183(1), 123–137 (2003)MATHCrossRefMathSciNetGoogle Scholar
  14. [Gir87]
    Girard, J.-Y.: Linear logic. Theoretical Computer Science 50, 1–102 (1987)MATHCrossRefMathSciNetGoogle Scholar
  15. [Gir98]
    Girard, J.-Y.: Light linear logic. Information and Computation 143, 175–204 (1998)MATHCrossRefMathSciNetGoogle Scholar
  16. [HJ03]
    Hofmann, M., Jost, S.: Static prediction of heap space usage for first-order functional programs. In: Proc. ACM POPL 2003 (2003)Google Scholar
  17. [Hof03]
    Hofmann, M.: Linear types and non-size-increasing polynomial time computation. Information and Computation 183(1), 57–85 (2003)MATHCrossRefMathSciNetGoogle Scholar
  18. [LM93]
    Leivant, D., Marion, J.-Y.: Lambda-calculus characterisations of polytime. Fundamenta Informaticae 19, 167–184 (1993)MATHMathSciNetGoogle Scholar
  19. [MM00]
    Marion, J.-Y., Moyen, J.-Y.: Efficient first order functional program interpreter with time bound certifications. In: Parigot, M., Voronkov, A. (eds.) LPAR 2000. LNCS, vol. 1955, pp. 25–42. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  20. [Ter01]
    Terui, K.: Light Affine Lambda-calculus and polytime strong normalization. In: Proceedings LICS 2001. IEEE Computer Society, Los Alamitos (2001), Full version available at: http://research.nii.ac.jp/~terui Google Scholar
  21. [Ter04a]
    Terui, K.: Light affine set theory: a naive set theory of polynomial time. Studia Logica 77, 9–40 (2004)MATHCrossRefMathSciNetGoogle Scholar
  22. [Ter04b]
    Terui, K.: A translation of LAL into DLAL (preprint, 2004), http://research.nii.ac.jp/~terui
  23. [Wel99]
    Wells, J.B.: Typability and type checking in system F are equivalent and undecidable. Ann. Pure Appl. Logic 98(1-3) (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Vincent Atassi
    • 1
  • Patrick Baillot
    • 1
  • Kazushige Terui
    • 2
  1. 1.LIPN, Univ. Paris 13 / CNRSFrance
  2. 2.National Institute of InformaticsJapan

Personalised recommendations