Clustering of Online Game Users Based on Their Trails Using Self-organizing Map

  • Ruck Thawonmas
  • Masayoshi Kurashige
  • Keita Iizuka
  • Mehmed Kantardzic
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4161)

Abstract

To keep an online game interesting to its users, it is important to know them. In this paper, in order to characterize user characteristics, we discuss clustering of online-game users based on their trails using Self Organization Map (SOM). As inputs to SOM, we introduce transition probabilities between landmarks in the targeted game map. An experiment is conducted confirming the effectiveness of the presented technique.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Börner, K., Penumarthy, S.: Social Diffusion Patterns in Three-Dimensional Virtual Worlds. Information Visualization Journal 2(3), 182–198 (2003)CrossRefGoogle Scholar
  2. 2.
    Kohonen, T.: Self-Organizing Maps, 2nd Extended edn. Springer Series in Information Sciences, vol. 30. Springer, New York (1997)CrossRefMATHGoogle Scholar
  3. 3.
    Oja, M., Kaski, S., Kohonen, T.: Bibliography of Self-Organizing Map (SOM) Papers: 1998-2001 Addendum. Neural Computing Surveys 3, 1–156 (2003)Google Scholar
  4. 4.
    Sadeghian, P., Kantardzic, M., Lozitskiy, O., Sheta, W.: Route Recommendations in Complex Virtual Environments: The Sequence Mining Approach. The International Journal of Human-Computer Studies (to appear)Google Scholar
  5. 5.
  6. 6.
    Chittaro, L., Ieronutti, L.: A Visual Tool for Tracing Behaviors of Users in Virtual Environments. In: Proc. of the 7th Internatioon Advanced Visual Interfaces Conference, pp. 40–47. ACM Press, New York (2004)Google Scholar
  7. 7.
    Thawonmas, R., Hata, K.: Aggregation of Action Symbol Sub-sequences for Discovery of Online-Game Player Characteristics Using KeyGraph. In: Kishino, F., Kitamura, Y., Kato, H., Nagata, N. (eds.) ICEC 2005. LNCS, vol. 3711, pp. 126–135. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2006

Authors and Affiliations

  • Ruck Thawonmas
    • 1
  • Masayoshi Kurashige
    • 1
  • Keita Iizuka
    • 1
  • Mehmed Kantardzic
    • 2
  1. 1.Intelligent Computer Entertainment Laboratory, Department of Human and Computer IntelligenceRitsumeikan UniversityKusatsu, ShigaJapan
  2. 2.Data Mining Lab, Computer Engineering and Computer Science DepartmentUniversity of LouisvilleLouisvilleUSA

Personalised recommendations