QoS-Aware Video Communications over TDMA/TDD Wireless Networks

  • Francisco M. Delicado
  • Pedro Cuenca
  • Luis Orozco-Barbosa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4217)


In recent years there has been an explosive growth on the use of wireless video communications. Despite much research in this field, the deployment of effective QoS-aware real-time video services over wireless channels remains a challenging task. In this paper, we first introduce and describe an overall system architecture capable of offering true end-to-end QoS guarantees to MPEG-4 video services running over TDMA/TDD wireless networks. The proposed system architecture is built by integrating two key system elements: a set of control mechanisms and various error resilient techniques. After reviewing the various system elements, we evaluate the use of the various mechanisms. We show the effectiveness of the proposed architecture in terms of various metrics. Our results show that the video quality as perceived by the end user can be significantly improved by making use of hierarchical video coding techniques.


TDMA/TDD WLAN QoS Hierarchical Video Coding Multimedia Communications Video Quality 


  1. 1.
    Delicado, F., Cuenca, P., Orozco-Barbosa, L., Garrido, A.: Design and Evaluation of a QoS-aware Framework for Wireless TDMA/TDD. Wireless Personal Communications Journal 2005(34), 37–90 (2005)Google Scholar
  2. 2.
    Delicado, F., Cuenca, P., Orozco-Barbosa, L.: QoS Mechanisms for Multimedia Communications over TDMA/TDD WLANs. To be published in Computer Communications Journal (2006)Google Scholar
  3. 3.
    Information Technology- Generic Coding of Audio-visual Objects- Part 2: Visual, ISO/IEC Std. 14 496-2 (March 1999)Google Scholar
  4. 4.
    Delicado, F., Garrido, A., Cuenca, P., Orozco-Barbosa, L., Quiles, F.: Improving the Robustness of MPEG-4 Video Communications over Wireless/3G Mobile Networks. In: Proc. of 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC 2002), Lisbon, Portugal, September 2002, vol. 4, pp. 1685–1689 (2002)Google Scholar
  5. 5.
    OPNET Modeler 10.0, © 1987-2003 OPNET Technologies, Inc.,
  6. 6.
    Coding of Speech at 16 Kbit/s Using Low-delay Dode Excited Linear Prediction, ITU-T Std. Rec. G.728 (September 1992)Google Scholar
  7. 7.
    Colombo, G., Lenzini, L., Mingozzi, E., Cornaglia, B., Santaniello, R.: Performance Evaluation of PRADOS: a Scheduling Algorithm for Traffic Integration in a Wireless ATM Networks. In: Proc. of ACM MOBICOM 1999, Seattle, WA, August 1999, pp. 143–150 (1999)Google Scholar
  8. 8.
    Klemm, A., Lindemann, C., Lohmann, M.: Traffic Modeling and Characterization for UMTS Networks. In: Proc. of IEEE GLOBECOM 2001, Internet Performance Symposium, San Antonio, TX (November 2001)Google Scholar
  9. 9.
    Karam, A., Tobagi, F.: On the Traffic and Service Classes in the Internet. In: Proc. of IEEE GLOBECOM 2000, San Francisco, CA, USA (2000)Google Scholar
  10. 10.
    Van den Branden, C.J., Verscheure, O.: Perceptual Measure Using a Spatio-Temporal Model of Human Visual System. Proceedings of SPIE Conference on Electronic Imaging, Digital Video Compression: Algorithms and Technologies 2668, 450–461 (1996)Google Scholar
  11. 11.
    Durresi, J.R.A., Babic, G.: Throughput fairness index: An explanation. ATM Forum/99-0045, Tech. Rep (February 1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Francisco M. Delicado
    • 1
  • Pedro Cuenca
    • 1
  • Luis Orozco-Barbosa
    • 1
  1. 1.Albacete Research Institute of InformaticsUniversity of Castilla la ManchaAlbaceteSpain

Personalised recommendations