A Quadtree-Based Data Dissemination Protocol for Wireless Sensor Networks with Mobile Sinks

  • Zeeshan Hameed Mir
  • Young-Bae Ko
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4217)


The envisioned sensor network architecture where some of the nodes may be mobile poses several new challenges to this special type of ad hoc wireless network. Recently, researchers have proposed several data dissemination protocols based on some hierarchical structure mainly constructed by a source node to support mobile sinks. However, such a source-initiated hierarchical structure results in significant resource consumption as the number of source-sink pairs are increased. Additionally, stimulus mobility aggravates the situation, where several sources may build a separate data forwarding hierarchy along the stimulus moving path. In this paper, we propose a new data dissemination protocol that exploits “Quadtree-based network space partitioning” to provide more efficient routing among multiple mobile stimuli and sink nodes. Simulation results show that our work significantly reduces average energy consumption while maintaining comparably higher data delivery ratio.


Wireless Sensor Networks Mobility Quadtree-based scheme 


  1. 1.
    Estrin, D., Girod, L., Pottie, G., Srivastava, M.: Instrumenting the World with Wireless Sensor Networks. In: Proc. ICASSP 2001 (May 2001)Google Scholar
  2. 2.
    Estrin, D., Govindan, R.: Next Century Challenges: Scalable Coordination in Sensor Networks. In: Proc. MobiCom 1999 (August 1999)Google Scholar
  3. 3.
    Burrell, J., Brooke, T., Beckwith, R.: Vineyard Computing: Sensor Networks in Agricultural Production. IEEE Pervasive Computing 3(1), 38–45 (2004)CrossRefGoogle Scholar
  4. 4.
    Intanagonwiwat, C., Govindan, R., Estrin, D.: Directed Diffusion: A Scalable and Robust Communication Paradigm for Sensor Networks. In: Proc. Mobicom 2000 (August 2000)Google Scholar
  5. 5.
    Ye, F., Luo, H., Cheng, J., Lu, S., Zhang, L.: A Two-Tier Data Dissemination Model for Large-scale Wireless Sensor Networks. In: Proc. Mobicom 2002 (September 2002)Google Scholar
  6. 6.
    Visvanathan, A., Youn, J.H., Deogun, J.: Hierarchical Data Dissemination Scheme for Large Scale Sensor Networks. In: Proc. ICC 2005 (May 2005)Google Scholar
  7. 7.
    Cimen, C., Cayirci, E., Coskun, V.: Querying Sensor Fields by using Quadtree based Dynamic Cluster and Task Sets. In: Proc. IEEE MILCOM 2003 (October 2003)Google Scholar
  8. 8.
    Schurgers, C., Srivastava, M.B.: Energy Efficient Routing in Wireless Sensor Networks. In: IEEE MILCOM 2001 (October 2001)Google Scholar
  9. 9.
    Lu, S., Ye, F., Zhong, G., Zhang, L.: Gradient Broadcast: A Robust Data Delivery Protocol for Large-scale Sensor Networks. In: Zhao, F., Guibas, L.J. (eds.) IPSN 2003. LNCS, vol. 2634. Springer, Heidelberg (2003)Google Scholar
  10. 10.
    Demirbas, M., Ferhatosmanoglu, H.: Peer-to-Peer Spatial Queries in Sensor Networks. In: Proc. IEEE P2P 2003 (September 2003)Google Scholar
  11. 11.
    Bulusu, N., Heidemann, J., Estrin, D.: GPS-less Low-Cost Outdoor Localization for Very Small Devices. IEEE Personal Communication 7(5), 28–34 (2000)CrossRefGoogle Scholar
  12. 12.
    ns-2 network simulator,
  13. 13.
    Yarvis, M., Kushalnagar, N., Singh, H., Rangarajan, A., Liu, Y., Singh, S.: Exploiting Heterogeneity in Sensor Networks. In: Proc. IEEE INFOCOM 2005 (March 2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Zeeshan Hameed Mir
    • 1
  • Young-Bae Ko
    • 1
  1. 1.Graduate School of Information and CommunicationAjou UniversitySuwonRepublic of Korea

Personalised recommendations