Advertisement

Performance of Downlink Group-Orthogonal Multicarrier Systems

  • Felip Riera-Palou
  • Guillem Femenias
  • Jaume Ramis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4217)

Abstract

Group-orthogonal multi-carrier code division multiple access (GO-MC-CDMA) has recently been proposed as a promising technique for the uplink segment of wireless systems. In this paper we propose and analyze a related scheme, group-orthogonal multi-carrier code division multiplexing (GO-MC-CDM), suitable for the downlink segment. The proposed receiver is shown to offer a similar bit error rate (BER) performance as the downlink version of GO-MC-CDMA at a fraction of its computational complexity. An analytical expression for the BER when using maximum likelihood (ML) detection is derived providing valuable insight into the parameters affecting the system performance and providing a basis for its optimization. Simulation results using parameters and channel models aiming at the next generation of wireless systems are provided confirming the analytically derived results.

Keywords

MC-CDMA downlink multi-symbol detection rotated spreading 

References

  1. 1.
    Yee, N., Linnartz, J.-P., Fettweis, G.: Multi-carrier CDMA in indoor wireless radio networks. In: Proc. IEEE Int. Symp. on Pers., Indoor and Mob. Rad. Comm., Yokohama, September 1993, pp. 109–113 (1993) (Japan)Google Scholar
  2. 2.
    Hara, S., Prasad, R.: Overview of multicarrier CDMA. IEEE Communications Mag. 35, 126–133 (1997)CrossRefGoogle Scholar
  3. 3.
    Fazel, K., Kaiser, S.: Multi-Carrier and Spread Spectrum Systems. Wiley, Chichester (2003)CrossRefGoogle Scholar
  4. 4.
    Cai, X., Zhou, S., Giannakis, G.: Group-orthogonal multicarrier CDMA. IEEE Trans. Communications 52(1), 90–99 (2004)CrossRefGoogle Scholar
  5. 5.
    Kaiser, S.: OFDM code-division multiplexing in fading channels. IEEE Trans. Communications 50, 1266–1273 (2002)CrossRefGoogle Scholar
  6. 6.
    Proakis, J.: Digital Communications, 3rd edn. Mc-Graw Hill (1996)Google Scholar
  7. 7.
    Hochwald, B., ten Brink, S.: Achieving near-capacity on a multiple-antenna channel. IEEE Trans. Communications 51, 389–399 (2003)CrossRefGoogle Scholar
  8. 8.
    Craig, J.W.: A new, simple and exact result for calculating the probability of error for two-dimensional signal constellations. In: IEEE MILCOM 1991 Conf. Rec., Boston, MA, pp. 25.5.1–25.5.5 (1991)Google Scholar
  9. 9.
    Schwartz, M., Bennett, W., Stein, S.: Communications Systems and Techniques. Wiley-IEEE Press (1995)Google Scholar
  10. 10.
    Femenias, G.: BER performance of linear STBC from orthogonal designs over MIMO correlated nakagami-m fading channels. IEEE Trans. Vehicular Tech. 53, 307–317 (2004)CrossRefGoogle Scholar
  11. 11.
    Bury, A., Egle, J., Lindner, J.: Diversity comparison of spreading transforms for multicarrier spread spectrum transmission. IEEE Trans. Communications 51(5), 774–781 (2003)CrossRefGoogle Scholar
  12. 12.
    European union framework program 6 - WINNER project, https://www.ist-winner.org/

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Felip Riera-Palou
    • 1
  • Guillem Femenias
    • 1
  • Jaume Ramis
    • 1
  1. 1.Dept. of Mathematics and InformaticsUniversity of the Balearic IslandsPalma de MallorcaSpain

Personalised recommendations