Network Flow for Collaborative Ranking

  • Ziming Zhuang
  • Silviu Cucerzan
  • C. Lee Giles
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4213)


In query based Web search, a significant percentage of user queries are underspecified, most likely by naive users. Collaborative ranking helps the naive user by exploiting the collective expertise. We present a novel algorithmic model inspired by the network flow theory, which constructs a search network based on search engine logs to describe the relationship between the relevant entities in search: queries, documents, and users. This formal model permits the theoretical investigation of the nature of collaborative ranking in more concrete terms, and the learning of the dependence relations among the different entities. FlowRank, an algorithm derived from this model through an analysis of empirical usage patterns, is implemented and evaluated. We empirically show its potential in experiments involving real-world user relevance ratings and a random sample of 1,334 documents and 100 queries from a popular document search engine. Definite improvements over two baseline ranking algorithms for approximately 47% of the queries are reported.


Graph models Network flow Graph theory Collaborative ranking User feedback FlowRank 


  1. 1.
    Bharat, K., Broder, A., Henzinger, M., Kumar, P., Venkatasubramanian, S.: The Connectivity Server: Fast Access to Linkage Information on the Web. In: Proc. of the 7th International World Wide Web Conference, pp. 469–477 (1998)Google Scholar
  2. 2.
    Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R., Tomkins, A., Wiener, J.: Graph structure in the web. In: Proc. of the 9th International World Wide Web Conference, pp. 309–320 (2000)Google Scholar
  3. 3.
    Carriere, J., Kazman, R.: WebQuery: Searching and visualizing the Web through connectivity. In: Proc. of the 6th International World Wide Web Conference (1997)Google Scholar
  4. 4.
    Kleinberg, J.: Authoritative sources in a hyperlinked environment. J. of the ACM 46(5), 604–632 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Brin, S., Page, L.: The anatomy of a large scale hypertextual web search engine. In: Proc. of the 7th International World Wide Web Conference, pp. 107–117 (1998)Google Scholar
  6. 6.
    Chakrabati, S., Dom, B., Gibson, D., Kleinberg, J., Raghavan, P., Rajagonpalan, S.: Automatic Resource List Compilation by Analyzing Hyperlink Structure and Associated Text. In: Proc. of the 7th International World Wide Web Conference (1998)Google Scholar
  7. 7.
    Tomita, J., Kikui, G.: Interactive Web Search by Graphical Query Refinement. In: Proc. the 10th International World Wide Web Conference (2002)Google Scholar
  8. 8.
    Flake, G.W., Lawrence, S., Giles, C.L.: Efficient identification of web communities. In: Proc. of the 6th International Conference on Knowledge Discovery and Data Mining, pp. 150–160 (2000)Google Scholar
  9. 9.
    Flake, G.W., Tsioutsiouliklis, K., Zhukov, L.: Methods for Mining Web Communities: Bibliometric, Spectral, and Flow. In: Web Dynamics. Springer, Heidelberg (2003)Google Scholar
  10. 10.
    Menache, I., Mannor, S., Shimkin, N.: Q-Cut - Dynamic Discovery of Sub-goals in Reinforcement Learning. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) ECML 2002. LNCS (LNAI), vol. 2430, pp. 295–306. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Chitrapura, K.P., Kashyap, S.R.: Node Ranking in Labeled Directed Graphs. In: Proc. of ACM Conference on Information and Knowledge Management, pp. 597–606 (2004)Google Scholar
  12. 12.
    Chidlovskii, B., Glance, N.S., Grasso, M.A.: Collaborative Re-Ranking of Search Results. In: The National Conference on Artificial Intelligence 2000 Workshop on AI for Web Search, pp. 18–23 (2000)Google Scholar
  13. 13.
    Zaiane, O.R., Strilets, A.: Finding Similar Queries to Satisfy Searches based on Query Traces. In: Proc. of the International Workshop on Efficient Web-Based Information Systems, pp. 207–216 (2002)Google Scholar
  14. 14.
    Joachims, T., Granka, L., Pan, B., Hembrooke, H., Gay, G.: Accurately Interpreting Clickthrough Data as Implicit Feedback. In: Proc. of Annual ACM Conference on Research and Development in Information Retrieval (SIGIR) 2005, pp. 154–161 (2005)Google Scholar
  15. 15.
    Daume, H., Brill, E.: Web search intent induction via automatic query reformulation. In: Human Language Technology Conference / North American Chapter of the Association for Computational Linguistics (2004)Google Scholar
  16. 16.
    Wen, J., Nie, J., Zhang, H.: Clustering user queries of a search engine. In: Proc. of the 10th International World Wide Web Conference, pp. 162–168 (2001)Google Scholar
  17. 17.
    Freyne, J., Smyth, B., Coyle, M., Balfe, E., Briggs, P.: Further Experiments on Collaborative Ranking in Community-Based Web Search. Artificial Intelligence Review 21(3-4), 229–252 (2004)CrossRefGoogle Scholar
  18. 18.
    Smyth, B., Balfe, E., Boydell, O., Bradley, K., Briggs, P., Coyle, M., Freyne, J.: A Live-User Evaluation of Collaborative Web Search. In: Proc. of the 19th International Joint Conference on Artificial Intelligence (IJCAI 2005) (2005)Google Scholar
  19. 19.
    Vakkari, P.: Subject knowledge, source of terms and term selection in query expansion. In: Crestani, F., Girolami, M., van Rijsbergen, C.J.K. (eds.) ECIR 2002. LNCS, vol. 2291, p. 110. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  20. 20.
    Ford Jr., L.R., Fulkerson, D.R.: Maximal flow through a network. Canadian J. of Mathematics 8, 399–404 (1956)zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Savoy, J., Vrajitoru, D.: Evaluation of learning schemes used in information retrieval. Technical Report CR-I-95-02, Faculty of Sciences, University of Neuchatel (1996)Google Scholar
  22. 22.
    Risvik, K.M., Mikolajewski, T., Boros, P.: Query Segmentation for Web Search. In: Proc. of the 11th International World Wide Web Conference, May 20-24 (2003)Google Scholar
  23. 23.
    Goldberg, A.V., Tarjan, R.E.: A new approach to the maximum-flow problem. J. of the ACM 35(4), 921–940 (1998)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Beeferman, D., Berger, A.: Agglomerative clustering of a search engine query log. In: Proc. of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 407–416 (2000)Google Scholar
  25. 25.
    Cheung, K., Tian, L.: Learning User Similarity and Rating Style for Collaborative Recommendation. Information Retrieval 7(3-4), 395–410 (2004)CrossRefGoogle Scholar
  26. 26.
    Jarvelin, K., Kekalainen, J.: IR Evaluation Methods for Retrieving Highly Relevant Documents. In: Proc. of the 23rd Annual ACM Conference on Research and Development in Information Retrieval (SIGIR), pp. 41–48 (2000)Google Scholar
  27. 27.
    Chien, S., Immorlica, N.: Semantic Similarity Between Search Engine Queries Using Temporal Correlation. In: Proc. of the 14th International Conference on World Wide Web, pp. 2–11 (2005)Google Scholar
  28. 28.
    Jarvelin, K., Kekalainen, J.: Cummulated Gain-based Evaluation of IR Techniques. ACM Transactions on Information Systems (TOIS) 20(4), 422–446 (2002)CrossRefGoogle Scholar
  29. 29.
    Edmonds, J., Kapr, R.M.: Theoretical improvements in the algorithmic efficiency for network flow problems. J. of ACM 19, 248–264 (1972)zbMATHCrossRefGoogle Scholar
  30. 30.
    Chartrand, G.: Cut-Vertices and Bridges. In: Introductory Graph Theory, pp. 45–49. Dover, New York (1985)Google Scholar
  31. 31.
    Jansen, J., Spink, A.: An Analysis of Web Documents Retrieved and Viewed. In: Proc. of the 4th International Conference on Internet Computing (2003)Google Scholar
  32. 32.
    Flake, G.W., Tarjan, R.E., Tsioutsiouliklis, K.: Graph Clustering and Minimum Cut Trees. J. of Internet Mathematics 1(4), 385–408 (2004)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ziming Zhuang
    • 1
  • Silviu Cucerzan
    • 2
  • C. Lee Giles
    • 1
  1. 1.Information Sciences and TechnologyThe Pennsylvania State UniversityUniversity ParkU.S.A
  2. 2.Microsoft ResearchRedmondU.S.A

Personalised recommendations