Advertisement

Bridging the Gap Between Timed Automata and Bounded Time Petri Nets

  • Bernard Berthomieu
  • Florent Peres
  • François Vernadat
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4202)

Abstract

Several recent papers investigate the relative expressiveness of Timed Automata and Time Petri Nets, two widespread models for realtime systems. It has been shown notably that Timed Automata and Bounded Time Petri Nets are equally expressive in terms of timed language acceptance, but that Timed Automata are strictly more expressive in terms of weak timed bisimilarity. This paper compares Timed Automata with Bounded Time Petri Nets extended with static Priorities, and shows that two large subsets of these models are equally expressive in terms of weak timed bisimilarity.

Keywords

Time Petri nets priorities Timed Automata weak timed bisimilarity real-time systems modeling and verification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R.: Timed automata. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 8–22. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  2. 2.
    Alur, R., Dill, D.L.: A theory of timed automata. TCS 126, 183–235 (1994)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bérard, B., Cassez, F., Haddad, S., Roux, O.H., Lime, D.: Comparison of the Expressiveness of Timed Automata and Time Petri Nets. In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 211–225. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Berthomieu, B., Diaz, M.: Modeling and verification of time dependent systems using time Petri nets. IEEE Trans. on Software Engineering 17(3), 259–273 (1991)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Berthomieu, B., Menasche, M.: An enumerative approach for analyzing time Petri nets. IFIP Congress Series 9, 41–46 (1983)Google Scholar
  6. 6.
    Berthomieu, B., Vernadat, F.: State class constructions for branching analysis of time Petri nets. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 442–457. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Bornot, S., Sifakis, J., Tripakis, S.: Modeling urgency in timed systems. In: de Roever, W.-P., Langmaack, H., Pnueli, A. (eds.) COMPOS 1997. LNCS, vol. 1536, pp. 103–129. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  8. 8.
    Bouyer, P., Haddad, S., Reynier, P.-A.: Extended timed automata and time Petri nets. In: Proc. of 6th Int. Conf. on Application of Concurrency to System Design (ACSD 2006), Turku, Finland. IEEE Computer Society Press, Los Alamitos (2006)Google Scholar
  9. 9.
    Cassez, F., Roux, O.H.: Structural translation from time petri nets to timed automata. Journal of Systems and Software (forthcoming, 2006)Google Scholar
  10. 10.
    D’Argenio, P.R., Gebremichael, B.: The coarsest congruence for timed automata with deadlines contained in bisimulation. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 125–140. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Haar, S., Kaiser, L., Simonot-Lion, F., Toussaint, J.: Equivalence of Timed State Machines and safe Time Petri Nets. In: Proc. of the 6th Workshop on Discrete Events Systems (WODES 2002), Zaragoza, Spain, pp. 119–124 (October 2002)Google Scholar
  12. 12.
    Hack, M.: Petri net languages. TR 159. MIT, Cambridge, Mass (1976)Google Scholar
  13. 13.
    Larsen, K.G., Pettersson, P., Yi, W.Y.: Model-checking for real-time systems. In: Reichel, H. (ed.) FCT 1995. LNCS, vol. 965, pp. 62–88. Springer, Heidelberg (1995)Google Scholar
  14. 14.
    Lime, D., Roux, O.H.: State class timed automaton of a time Petri net. In: 10th International Workshop on Petri Nets and Performance Models (PNPM 2003), Urbana, USA, September 2003, pp. 124–133. IEEE Computer Society, Los Alamitos (2003)CrossRefGoogle Scholar
  15. 15.
    Merlin, P.M., Farber, D.J.: Recoverability of communication protocols: Implications of a theoretical study. IEEE Tr. Comm. 24(9), 1036–1043 (1976)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Bernard Berthomieu
    • 1
  • Florent Peres
    • 1
  • François Vernadat
    • 1
  1. 1.LAAS-CNRSToulouseFrance

Personalised recommendations