Integrating Discrete- and Continuous-Time Metric Temporal Logics Through Sampling

  • Carlo A. Furia
  • Matteo Rossi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4202)

Abstract

Real-time systems usually encompass parts that are best described by a continuous-time model, such as physical processes under control, together with other components that are more naturally formalized by a discrete-time model, such as digital computing modules. Describing such systems in a unified framework based on metric temporal logic requires to integrate formulas which are interpreted over discrete and continuous time.

In this paper, we tackle this problem with reference to the metric temporal logic TRIO, that admits both a discrete-time and a continuous-time semantics. We identify sufficient conditions under which TRIO formulas have a consistent truth value when moving from continuous-time to discrete-time interpretations, or vice versa. These conditions basically involve the restriction to a proper subset of the TRIO language and a requirement on the finite variability over time of the basic items in the specification formulas. We demonstrate the approach with an example of specification and verification.

Keywords

formal methods real-time integration discretization metric temporal logic discrete time continuous time dense time 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. JACM 43(1), 116–146 (1996)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Alur, R., Henzinger, T.A., Lafferriere, G., Pappas, G.J.: Discrete abstractions of hybrid systems. In: Antsaklis [3], pp. 971–984Google Scholar
  3. 3.
    Antsaklis, P.J. (ed.): Special issue on hybrid systems: theory and applications. Proceedings of the IEEE 88 (2000)Google Scholar
  4. 4.
    Asarin, E., Maler, O., Pnueli, A.: On discretization of delays in timed automata and digital circuits. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 470–484. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  5. 5.
    Ciapessoni, E., Coen-Porisini, A., Crivelli, E., Mandrioli, D., Mirandola, P., Morzenti, A.: From formal models to formally-based methods: an industrial experience. ACM TOSEM 8(1), 79–113 (1999)CrossRefGoogle Scholar
  6. 6.
    De Wulf, M., Doyen, L., Raskin, J.-F.: Almost ASAP semantics. Formal Aspects of Computing 17(3), 319–341 (2005)MATHCrossRefGoogle Scholar
  7. 7.
    Fidge, C.J.: Modelling discrete behaviour in a continuous-time formalism. In: Proceedings of IFM 1999, pp. 170–188. Springer, Heidelberg (1999)Google Scholar
  8. 8.
    Furia, C.A., Rossi, M.: A compositional framework for formally verifying modular systems. ENTCS, vol. 116, pp. 185–198. Elsevier, Amsterdam (2004)Google Scholar
  9. 9.
    Furia, C.A., Rossi, M.: When discrete met continuous. Technical Report 2005.44, DEI, Politecnico di Milano (2005), Available from: http://www.elet.polimi.it/upload/furia/
  10. 10.
    Ghezzi, C., Mandrioli, D., Morzenti, A.: TRIO: A logic language for executable specifications of real-time systems. JSS 12(2), 107–123 (1990)Google Scholar
  11. 11.
    Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics: A foundation for computer science. Addison-Wesley, Reading (1994)MATHGoogle Scholar
  12. 12.
    Henzinger, T.A., Manna, Z., Pnueli, A.: What good are digital clocks? In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 545–558. Springer, Heidelberg (1992)Google Scholar
  13. 13.
    Hung, D.V., Giang, P.H.: Sampling semantics of duration calculus. In: Jonsson, B., Parrow, J. (eds.) FTRTFT 1996. LNCS, vol. 1135, pp. 188–207. Springer, Heidelberg (1996)Google Scholar
  14. 14.
    Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time Systems 2(4), 255–299 (1990)CrossRefGoogle Scholar
  15. 15.
    Morzenti, A., Mandrioli, D., Ghezzi, C.: A model parametric real-time logic. ACM TOPLAS 14(4), 521–573 (1992)CrossRefGoogle Scholar
  16. 16.
    Morzenti, A., Pradella, M., San Pietro, P., Spoletini, P.: Model-checking TRIO specifications in SPIN. In: Araki, K., Gnesi, S., Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 542–561. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Ouaknine, J.: Digisation and full abstraction for dense-time model checking. In: Katoen, J.-P., Stevens, P. (eds.) ETAPS 2002 and TACAS 2002. LNCS, vol. 2280, pp. 37–51. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  18. 18.
    Ouaknine, J., Worrell, J.: Revisiting digitization, robustness, and decidability for timed automata. In: Proceedings of LICS 2003, pp. 198–207. IEEE Computer Society, Los Alamitos (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Carlo A. Furia
    • 1
  • Matteo Rossi
    • 1
  1. 1.Dipartimento di Elettronica e InformazionePolitecnico di MilanoMilanoItaly

Personalised recommendations