Temporal Logic Verification Using Simulation

  • Georgios E. Fainekos
  • Antoine Girard
  • George J. Pappas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4202)

Abstract

In this paper, we consider a novel approach to the temporal logic verification problem of continuous dynamical systems. Our methodology has the distinctive feature that enables the verification of the temporal properties of a continuous system by verifying only a finite number of its (simulated) trajectories. The proposed framework comprises two main ideas. First, we take advantage of the fact that in metric spaces we can quantify how close are two different states. Based on that, we define robust, multi-valued semantics for MTL (and LTL) formulas. These capture not only the usual Boolean satisfiability of the formula, but also topological information regarding the distance from unsatisfiability. Second, we use the recently developed notion of bisimulation functions to infer the behavior of a set of trajectories that lie in the neighborhood of the simulated one. If the latter set of trajectories is bounded by the tube of robustness, then we can infer that all the trajectories in the neighborhood of the simulated one satisfy the same temporal specification as the simulated trajectory. The interesting and promising feature of our approach is that the more robust the system is with respect to the temporal logic specification, the less is the number of simulations that are required in order to verify the system.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999)Google Scholar
  2. 2.
    Alur, R.: Timed automata. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 8–22. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  3. 3.
    Asarin, E., Bournez, O., Dang, T., Maler, O.: Approximate reachability analysis of piecewise linear dynamical systems. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 21–31. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Asarin, E., Dang, T., Girard, A.: Reachability of non-linear systems using conservative approximations. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 22–35. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theoretical Computer Science 138, 3–34 (1995)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Chutinan, A., Krogh, B.: Verification of polyhedral invariant hybrid automata using polygonal flow pipe approximations. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS, vol. 1569, pp. 76–90. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  7. 7.
    Henzinger, T.A., Ho, P.H., Wong-Toi, H.: Algorithmic analysis of nonlinear hybrid systems. IEEE Transactions on Automatic Control 43, 540–554 (1998)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Frehse, G.: Phaver: Algorithmic verification of hybrid systems past hytech. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 258–273. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 291–305. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Han, Z.: Formal Verification of Hybrid Systems using Model Order Reduction and Decomposition. PhD thesis, Dept. of ECE, Carnegie Mellon University (2005)Google Scholar
  11. 11.
    Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004 and FTRTFT 2004. LNCS, vol. 3253, pp. 152–166. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Kapinski, J., Krogh, B.H., Maler, O., Stursberg, O.: On systematic simulation of open continuous systems. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 283–297. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Esposito, J.M., Kim, J., Kumar, V.: Adaptive RRTs for validating hybrid robotic control systems. In: International Workshop on the Algorithmic Foundations of Robotics (2004)Google Scholar
  14. 14.
    Girard, A., Pappas, G.J.: Verification using simulation. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, pp. 272–286. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time Systems 2, 255–299 (1990)CrossRefGoogle Scholar
  16. 16.
    Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for finite state sequences in metric spaces. Technical Report MS-CIS-06-05, Dept. of CIS, Univ. of Pennsylvania (2006)Google Scholar
  17. 17.
    Girard, A., Pappas, G.J.: Approximation metrics for discrete and continuous systems. Technical Report MS-CIS-05-10, Dept. of CIS, Univ. of Pennsylvania (2005)Google Scholar
  18. 18.
    Huang, J., Voeten, J., Geilen, M.: Real-time property preservation in approximations of timed systems. In: Proceedings of the 1st ACM & IEEE International Conference on Formal Methods and Models for Co-Design, pp. 163–171 (2003)Google Scholar
  19. 19.
    Henzinger, T.A., Majumdar, R., Prabhu, V.S.: Quantifying similarities between timed systems. In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 226–241. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Alur, R., Torre, S.L., Madhusudan, P.: Perturbed timed automata. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 70–85. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    de Alfaro, L., Faella, M., Henzinger, T.A., Majumdar, R., Stoelinga, M.: Model checking discounted temporal properties. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 77–92. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  22. 22.
    Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes: The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge (1992)Google Scholar
  23. 23.
    Ouaknine, J., Worrell, J.: On the decidability of metric temporal logic. In: 20th IEEE Symposium on Logic in Computer Science (LICS), pp. 188–197 (2005)Google Scholar
  24. 24.
    Thati, P., Rosu, G.: Monitoring algorithms for metric temporal logic specifications. In: Runtime Verification. ENTCS, vol. 113, pp. 145–162. Elsevier, Amsterdam (2005)Google Scholar
  25. 25.
    Girard, A., Pappas, G.J.: Approximate bisimulations for constrained linear systems. In: Proceedings of 44th IEEE Conference on Decision and Control and European Control Conference, pp. 4700–4705 (2005)Google Scholar
  26. 26.
    Girard, A., Pappas, G.J.: Approximate bisimulations for nonlinear dynamical systems. In: Proceedings of 44th IEEE Conference on Decision and Control and European Control Conference, pp. 684–689 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Georgios E. Fainekos
    • 1
  • Antoine Girard
    • 2
  • George J. Pappas
    • 3
  1. 1.Department of Computer and Information ScienceUniv. of PennsylvaniaUSA
  2. 2.VERIMAGGièresFrance
  3. 3.Department of Electrical and Systems EngineeringUniv. of PennsylvaniaUSA

Personalised recommendations