Model Checking Timed Automata with Priorities Using DBM Subtraction

  • Alexandre David
  • John Håkansson
  • Kim G. Larsen
  • Paul Pettersson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4202)


In this paper we describe an extension of timed automata with priorities, and efficient algorithms to compute subtraction on DBMs (difference bounded matrices), needed in symbolic model-checking of timed automata with priorities. The subtraction is one of the few operations on DBMs that result in a non-convex set needing sets of DBMs for representation. Our subtraction algorithms are efficient in the sense that the number of generated DBMs is significantly reduced compared to a naive algorithm. The overhead in time is compensated by the gain from reducing the number of resulting DBMs since this number affects the performance of symbolic model-checking. The uses of the DBM subtraction operation extend beyond timed automata with priorities. It is also useful for allowing guards on transitions with urgent actions, deadlock checking, and timed games.


Mutual Exclusion Process Algebra Priority Order Symbolic State Delay Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdeddaïm, Y., Asarin, E., Maler, O.: Scheduling with timed automata. Theoretical Computer Science 354(2), 272–300 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Alur, R., Dill, D.L.: Automata for modeling real-time systems. In: Paterson, M. (ed.) ICALP 1990. LNCS, vol. 443, pp. 322–335. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  3. 3.
    Barnes, J.G.P.: Programming in Ada, Plus and Overview of Ada 9X. Addison-Wesley, Reading (1994)Google Scholar
  4. 4.
    Bengtsson, J., Griffioen, W.O.D., Kristoffersen, K.J., Larsen, K.G., Larsson, F., Pettersson, P., Yi, W.: Automated analysis of an audio control protocol using UPPAAL. Journal of Logic and Algebraic Programming 52–53, 163–181 (2002)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Bengtsson, J., Yi, W.: Timed automata: Semantics, algorithms and tools. In: Desel, J., Reisig, W., Rozenberg, G. (eds.) Lectures on Concurrency and Petri Nets. LNCS, vol. 3098, pp. 87–124. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Bornot, S., Goessler, G., Sifakis, J.: On the construction of live timed systems. In: Schwartzbach, M.I., Graf, S. (eds.) ETAPS 2000 and TACAS 2000. LNCS, vol. 1785, pp. 109–126. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Bozga, M., Daws, C., Maler, O., Olivero, A., Tripakis, S., Yovine, S.: Kronos: A Model-Checking Tool for Real-Time Systems. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, pp. 546–550. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  8. 8.
    Brémond-Grégoire, P., Lee, I.: A process algebra of communicating shared resources with dense time and priorities. Theoretical Computer Science 189(1–2), 179–219 (1997)CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    Buttazzo, G.C.: Hard Real-Time Computing Systems. Predictable Scheduling Algorithms and Applications. Kluwer Academic Publishers, Dordrecht (1997)zbMATHGoogle Scholar
  10. 10.
    Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient On-the-Fly Algorithms for the Analysis of Timed Games. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 66–80. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Cleaveland, R., Hennessy, M.: Priorities in process algebras. Inf. Comput. 87(1-2), 58–77 (1990)CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    Corbett, J.: Modeling and analysis of real-time ada tasking programs. In: Proceedings of 15th IEEE Real-Time Systems Symposium, San Juan, Puerto Rico, USA, pp. 132–141. IEEE Computer Society Press, Los Alamitos (1994)Google Scholar
  13. 13.
    Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 197–212. Springer, Heidelberg (1990)Google Scholar
  14. 14.
    Fersman, E., Pettersson, P., Yi, W.: Timed automata with asynchronous processes: Schedulability and decidability. In: Katoen, J.-P., Stevens, P. (eds.) ETAPS 2002 and TACAS 2002. LNCS, vol. 2280, pp. 67–82. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Floyd, R.W.: ACM algorithm 97: Shortest path. Communications of the ACM 5(6), 345 (1962)CrossRefGoogle Scholar
  16. 16.
    Pao-Ann H., Shang-Wei, L.: Model checking timed systems with priorities. In: RTCSA, pp. 539–544 (2005)Google Scholar
  17. 17.
    Lamport, L.: A fast mutual exclusion algorithm. ACM Transactions on Computer Systems 5(1), 1–11 (1987)CrossRefGoogle Scholar
  18. 18.
    Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a Nutshell. Int. Journal on Software Tools for Technology Transfer 1(1–2), 134–152 (1997)CrossRefzbMATHGoogle Scholar
  19. 19.
    Larsson, F., Larsen, K.G., Pettersson, P., Yi, W.: Efficient verification of real-time systems: Compact data structures and state-space reduction. In: Proc. of the 18th IEEE Real-Time Systems Symposium, pp. 14–24. IEEE Computer Society Press, Los Alamitos (1997)Google Scholar
  20. 20.
    Lewerentz, C., Lindner, T.: “production cell”: A comparative study in formal specification and verification. In: Jähnichen, S., Broy, M. (eds.) KORSO 1995. LNCS, vol. 1009, pp. 388–416. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  21. 21.
    Melcher, H., Winkelmann, K.: Controller synthesis for the “production cell” case study. In: Proceedings of the second workshop on Formal methods in software practice, pp. 24–36. ACM Press, New York (1998)CrossRefGoogle Scholar
  22. 22.
    Rokicki, T.G.: Representing and Modeling Digital Circuits. PhD thesis, Stanford University (1993)Google Scholar
  23. 23.
    Tripakis, S., Yovine, S.: Verification of the Fast Reservation Protocol with Delayed Transmission using the tool Kronos. In: Proc. of the 4th IEEE Real-Time Technology and Applications Symposium. IEEE Computer Society Press, Los Alamitos (1998)Google Scholar
  24. 24.
    Wang, F.: RED: Model-checker for timed automata with clock-restriction diagram. In: Pettersson, P., Yovine, S. (eds.) Workshop on Real-Time Tools, Aalborg University Denmark, number 2001-014 in Technical Report. Uppsala University (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Alexandre David
    • 1
  • John Håkansson
    • 2
  • Kim G. Larsen
    • 1
  • Paul Pettersson
    • 2
  1. 1.Department of Computer ScienceAalborg UniversityDenmark
  2. 2.Department of Information TechnologyUppsala UniversitySweden

Personalised recommendations