Advertisement

Towards a Multi-modal Atlas for Neurosurgical Planning

  • M. Mallar Chakravarty
  • Abbas F. Sadikot
  • Sanjay Mongia
  • Gilles Bertrand
  • D. Louis Collins
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4191)

Abstract

Digital brain atlases can be used in conjuction with magnetic resonance imaging (MRI) and computed tomography (CT) for planning and guidance during neurosurgery. Digital atlases are advantageous since they can be warped nonlinearly to fit each patient’s unique anatomy. Functional neurosurgery with implantation of deep brain stimulating (DBS) electrodes requires accurate targeting, and has become a popular surgical technique in Parkinsonian patients. In this paper, we present a method for integrating postoperative data from subthalamic (STN) DBS implantation into an antomical atlas of the basal ganglia and thalamus. The method estimates electrode position from post-operative magnetic resonance imaging (MRI) data. These electrodes are then warped back into the atlas space and are modelled in three dimensions. The average of these models is then taken to show the region where the majority of STN DBS electrodes were implanted. The group with more favorable post-operative results was separated from the group which responded to the STN DBS implantation procedure less favourably to create a probablisitic distribution of DBS in the STN electrodes.

References

  1. 1.
    Bardinet, E., Dormont, D., Malandain, G., Bhattacharjee, M., Pidoux, B., Saleh, C., Cornu, P., Ayache, N., Agid, Y., Yelnik, J.: Retrospective cross-evaluation of an histological and deformable 3d atlas of the basal ganglia on series on parkinsonian patients treated by deep brain stimulation. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 385–393. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Benabid, A.L., Koudsie, A., Benazzouz, A., Le Bas, J.F., Pollak, P.: Imaging of subthalamic nucleus and ventralis intermedius of the thalamus. Movement Disorders 129, S123–S129 (2002)Google Scholar
  3. 3.
    Borgefors, G.: Distance Transformations in Arbitrary Dimensions. Computer Vision, Graphics, and Image Processing 27, 321–345 (1984)CrossRefGoogle Scholar
  4. 4.
    Chakravarty, M.M., Bertrand, G., Hodge, C.P., Sadikot, A.F., Collins, D.L.: The creation of a brain atlas for image guided neurosurgery using serial histological data. NeuroImage 30(2), 359–376 (2006)CrossRefGoogle Scholar
  5. 5.
    Chakravarty, M.M., Sadikot, A.F., Germann, J., Bertrand, G., Collins, D.L.: Anatomical and electrophysiological validation of an atlas for neurosurgical planning. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 394–401. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Collins, D.L., Evans, A.C.: ANIMAL: validation and application of non-linear registration-based segmentation. International Journal of Pattern Recognition and Artificial Intelligence, 1271–1294 (December 1997)Google Scholar
  7. 7.
    Collins, D.L., Neelin, P., Peters, T.M., Evans, A.C.: Automatic 3D Intersubject Registration of MR Volumetric Data in Standardized Talairach Space. J. of Computer Assisted Tomography 18(2), 192–205 (1994)CrossRefGoogle Scholar
  8. 8.
    Cuny, E., Guehl, D., Burbard, P., Gross, C., Dousset, V., Rogier, A.: Lack of agreement between direct magnetic resonance imaging and statistical determination of a subthalamic target: the role of electrophysiological guidance. Journal of Neurosurgery, 591–597 (2002)Google Scholar
  9. 9.
    D’Haese, P.F., Cetinkaya, E., Konrad, P.E., Kao, C., Dawant, B.M.: Computer-aided placement of deep brain stimulators: From planning to intraoperative guidance. IEEE Transactions on Medical Imaging, 24(11)Google Scholar
  10. 10.
    D’Haese, P.F., Pallavaram, S., Niermann, K., Spooner, J., Kao, C., Konrad, P.E., Dawant, B.M.: Automatic selection of DBS target points using multiple electrophysiological atlases. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 427–434. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Duerden, E.G., Finnis, K.W., Peters, T.M., Sadikot, A.F.: A Method for Analysis of Electrophysiological Responses Obtained from the Motor Fibers of the Human Internal Capsule. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2879, pp. 50–57. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Finnis, K.W., Starrveld, Y.P., Parrent, A.G., Sadikot, A.F., Peters, T.M.: Three-dimensional database of subcortical electrophysiology for image-guided stereotactic functional neurosurgery. IEEE Transactions on Medical Imaging 22(1), 93–104 (2003)CrossRefGoogle Scholar
  13. 13.
    Guo, T., Finnis, K.W., Parrent, A.G., Peters, T.M.: Development and application of functional databases for planning deep-brain neurosurgical procedures. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 835–842. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Holmes, C.J., Hoge, R., Collins, L., Woods, R., Toga, A.W., Evans, A.C.: Enhancement of MR images using registration for signal averaging. Journal of Computer Assisted Tomography 22(2), 324–333 (1998)CrossRefGoogle Scholar
  15. 15.
    Krause, M., Fogel, W., Hacke, W., Bonsanto, M., Trenkwalder, C., Tronnier, V.: Deep brain stimulation for the treatment of parkinson’s disease: subthalamic nucleus versus globus pallidus internis. Journal of Neurology, Neurosurgery, and Psychiatry 70, 464–470 (2001)CrossRefGoogle Scholar
  16. 16.
    Nowinski, W.L., Belov, D., Benabid, A.L.: An algorithm for rapid calcualation of a probablisitic functional atlas subcortical structures from electrophyisiological data collected during functional neurosurgical procedures. NeuroImage 18, 143–155 (2003)CrossRefGoogle Scholar
  17. 17.
    Robbins, S., Evans, A.C., Collins, D.L., Whitesides, S.: Tuning and Comparing Spatial Normalization Methods. Medical Image Analysis 8(3), 311–323 (2004)CrossRefGoogle Scholar
  18. 18.
    Schaltenbrand, G., Wahren, W.: Atlas for Stereotaxy of the Human Brain. Georg Thieme Verlag, Stuttgart, Germany (1977)Google Scholar
  19. 19.
    St-Jean, P., Sadikot, A.F., Collins, L., Clonda, D., Kasrai, R., Evans, A.C., Peters, T.M.: Automated Atlas Integration and Interactive Three-Dimensional Visualization Tools for Planning and Guidance in Functional Neurosurgery. IEEE Transactions on Medical Imaging (TMI) 17(5), 854–866 (1998)Google Scholar
  20. 20.
    Starr, P.A., Vitek, J.L., DeLong, M., Bakay, R.A.: Magnetic resonance imaging-based steretactic localization of the globus pallidus and subthalamic nucleus. Neurosurgery 44(2), 303–314 (1999)CrossRefGoogle Scholar
  21. 21.
    Talairach, J., Tournoux, P.: Co-Planar Stereotaxic Atlas of the Human Brain. Georg Thieme Verlag, Stuttgart, Germany (1988)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • M. Mallar Chakravarty
    • 1
  • Abbas F. Sadikot
    • 1
    • 2
  • Sanjay Mongia
    • 2
  • Gilles Bertrand
    • 1
    • 2
  • D. Louis Collins
    • 1
  1. 1.McConnell Brain Imaging Centre 
  2. 2.Department of NeurosurgeryMontreal Neurological InstituteMontrealCanada

Personalised recommendations