A Digital Pediatric Brain Structure Atlas from T1-Weighted MR Images

  • Zuyao Y. Shan
  • Carlos Parra
  • Qing Ji
  • Robert J. Ogg
  • Yong Zhang
  • Fred H. Laningham
  • Wilburn E. Reddick
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4191)

Abstract

Human brain atlases are indispensable tools in model-based segmentation and quantitative analysis of brain structures. However, adult brain atlases do not adequately represent the normal maturational patterns of the pediatric brain, and the use of an adult model in pediatric studies may introduce substantial bias. Therefore, we proposed to develop a digital atlas of the pediatric human brain in this study. The atlas was constructed from T1-weighted MR data set of a 9-year old, right-handed girl. Furthermore, we extracted and simplified boundary surfaces of 25 manually defined brain structures (cortical and subcortical) based on surface curvature. We constructed a 3D triangular mesh model for each structure by triangulation of the structure’s reference points. Kappa statistics (cortical, 0.97; subcortical, 0.91) indicated substantial similarities between the mesh-defined and the original volumes. Our brain atlas and structural mesh models (www.stjude.org/brainatlas) can be used to plan treatment, to conduct knowledge and model-driven segmentation, and to analyze the shapes of brain structures in pediatric patients.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ganser, K.A., Dickhaus, H., Metzner, R., et al.: A deformable digital brain atlas system according to Talairach and Tournoux. Medical Image Analysis 8, 3–22 (2004)CrossRefGoogle Scholar
  2. 2.
    Pommert, A., Riemer, M., Schiemann, T., et al.: Knowledge-Based and 3D Imaging-Systems in Medical-Education. Information Processing 1994, vol. II, IFIP Trans A-Computer Sci. and Tech. 52, 525–532 (1994)Google Scholar
  3. 3.
    Kikinis, R., Shenton, M.E., Iosifescu, D.V., et al.: A digital brain atlas for surgical planning, model-driven segmentation, and teaching. IEEE Tran. Visualization and Computer Graphics 2, 232–241 (1996)CrossRefGoogle Scholar
  4. 4.
    Thurfjell, L., Bohm, C., Bengtsson, E.: Cba - An Atlas-Based Software Tool Used to Facilitate the Interpretation of Neuroimaging Data. Computer Methods and Programs in Biomedicine 47, 51–71 (1995)CrossRefGoogle Scholar
  5. 5.
    Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., et al.: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15, 273–289 (2002)CrossRefGoogle Scholar
  6. 6.
    Paus, T., Zijdenbos, A., Worsley, K., et al.: Structural maturation of neural pathways in children and adolescents: In vivo study. Science 283, 1908–1911 (1999)CrossRefGoogle Scholar
  7. 7.
    Wilke, M., Schmithorst, V.J., Holland, S.K.: Normative pediatric brain data for spatial normalization and segmentation differs from standard adult data. Magnetic Resonance in Medicine 50, 749–757 (2003)CrossRefGoogle Scholar
  8. 8.
    Kates, W.R., Warsofsky, I.S., Patwardhan, A., et al.: Automated Talairach atlas-based parcellation and measurement of cerebral lobes in children. Psychiatry Research-Neuroimaging 91, 11–30 (1999)CrossRefGoogle Scholar
  9. 9.
    Maes, F., Collignon, A., Vandermeulen, D., et al.: Multimodality image registration by maximization of mutual information. IEEE Trans. Med. Imaging 16, 187–198 (1997)CrossRefGoogle Scholar
  10. 10.
    Press, W.H., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C, 2nd edn. Cambridge University Press, New York (1992)MATHGoogle Scholar
  11. 11.
    Carpenter, M.B.: Core text of neuroanatomy, 3rd edn. Williams & Wilkins, Baltimore (1985)Google Scholar
  12. 12.
    Kim, J.J., Crespo-Facorro, B., Andreasen, N.C., et al.: An MRI-based parcellation method for the temporal lobe. Neuroimage 11, 271–288 (2000)CrossRefGoogle Scholar
  13. 13.
    Crespo-Facorro, B., Kim, J.J., Andreasen, N.C., et al.: Human frontal cortex: An MRI-based parcellation method. Neuroimage 10, 500–519 (1999)CrossRefGoogle Scholar
  14. 14.
    Berg, D.M., Kreveld van, M., Overmars, M., et al.: Computational geometry: algorithms and applications, 2nd rev. edn. Springer, Berlin (2000)Google Scholar
  15. 15.
    Shan, Z.Y., Parra, C., Ji, Q., Jain, J., Reddick, W.E.: A Knowledge-Guided Active Model Method of Cortical Structure Segmentation on Pediatric MR images. J. Magn. Reson. Imging (in press)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Zuyao Y. Shan
    • 1
  • Carlos Parra
    • 2
  • Qing Ji
    • 1
  • Robert J. Ogg
    • 1
  • Yong Zhang
    • 1
  • Fred H. Laningham
    • 3
  • Wilburn E. Reddick
    • 1
    • 2
  1. 1.Division of Translational Imaging Research, Department of Radiological SciencesSt. Jude Children’s Research HospitalMemphisUSA
  2. 2.Department of Biomedical EngineeringThe University of MemphisMemphisUSA
  3. 3.Division of Diagnostic Imaging, Department of Radiological SciencesSt. Jude Children’s Research HospitalMemphis

Personalised recommendations