Advertisement

A Comparison of Needle Bending Models

  • Ehsan Dehghan
  • Orcun Goksel
  • Septimiu E. Salcudean
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4190)

Abstract

Modeling the deflection of flexible needles is an essential part of needle insertion simulation and path planning. In this paper, three models are compared in terms of accuracy in simulating the bending of a prostate brachytherapy needle. The first two utilize the finite element method, one using geometric non-linearity and triangular plane elements, the other using non-linear beam elements. The third model uses angular springs to model cantilever deflection. The simulations are compared with the experimental bent needle configurations. The models are assessed in terms of geometric conformity using independently identified and pre-identified model parameters. The results show that the angular spring model, which is also the simplest, simulates the needle more accurately than the others.

Keywords

Path Planning Beam Element Triangular Element Needle Insertion Prostate Brachytherapy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Alterovitz, R., Goldberg, K., Pouliot, J., Taschereau, R., Hsu, I.C.: Needle insertion and radioactive seed implantation in human tissue: Simulation and sensitivity analysis. In: Proc. IEEE Int. Conf. Rob. Autom., vol. 2, pp. 1793–1799 (2003)Google Scholar
  2. 2.
    DiMaio, S., Salcudean, S.: Interactive simulation of needle insertion models. IEEE Trans. Biomed. Eng. 52, 1167–1179 (2005)CrossRefGoogle Scholar
  3. 3.
    Webster III, R., Cowan, N., Chirikjian, G., Okamura, A.: Nonholonomic modeling of needle steering. In: Proc. Int. Symp. on Exp. Robotics, pp. 3337–3343 (2004)Google Scholar
  4. 4.
    Goksel, O., DiMaio, S.P., Salcudean, S.E., Rohling, R., Morris, J.: 3D needle-tissue interaction simulation for prostate brachytherapy. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 827–834. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Alterovitz, R., Goldberg, K., Chirikijan, G., Okamura, A.: Steering flexible needle under markov motion uncertainity. In: IEEE Int. Conf. Intel. Rob. Sys., pp. 120–125 (2005)Google Scholar
  6. 6.
    Alterovitz, R., Goldberg, K., Okamura, A.: Planning for steerable bevel-tip needle insertion through 2D soft tissue with obstacles. In: Proc. IEEE. Int. Conf. Rob. Autom., pp. 1652–1657 (2005)Google Scholar
  7. 7.
    Glozman, D., Shoham, M.: Flexible needle steering and optimal trajectory planning for percutaneous therapies. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3217, pp. 137–144. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    DiMaio, S.P., Salcudean, S.E.: Needle insertion modeling and simulation. IEEE Trans. Robotics and Automation 19, 864–875 (2003)CrossRefGoogle Scholar
  9. 9.
    Simone, C., Okamura, A.: Modeling of needle insertion forces for robot-assisted percutaneous therapy. In: Proc. IEEE Int. Conf. Rob. Autom., pp. 2085–2091 (2002)Google Scholar
  10. 10.
    Anjyo, K., Usami, Y., Kurihara, T.: Simple method for extracting the natural beauty of hair. Computer Graphics (ACM) 26, 111–120 (1992)CrossRefGoogle Scholar
  11. 11.
    Anshelevich, E., Owens, S., Lamiraux, F., Kavraki, L.E.: Deformable volumes in path planning applications. In: Proc. IEEE Int. Conf. Rob. Autom., pp. 2290–2295 (2000)Google Scholar
  12. 12.
    Reddy, J.N.: An Introduction to Nonlinear Finite Element Analysis. Oxford University Press, Oxford (2004)zbMATHCrossRefGoogle Scholar
  13. 13.
    Ebrahimi, R., Okazawa, S., Rohling, R., Salcudean, S.: Hand-held steerable needle device. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2879, pp. 223–230. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ehsan Dehghan
    • 1
  • Orcun Goksel
    • 1
  • Septimiu E. Salcudean
    • 1
  1. 1.Department of Electrical and Computer EngineeringUniversity of British ColumbiaVancouverCanada

Personalised recommendations