Advertisement

Hierarchical Stereo Matching: From Foreground to Background

  • Zhang Kai
  • Wang Yuzhou
  • Wang Guoping
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4179)

Abstract

In this paper we propose a new segment-based stereo matching algorithm using scene hierarchical structure. In particular, we highlight a previously overlooked geometric fact: the most foreground objects can be easily detected by intensity-based cost function and the farer objects can be matched using local occlusion model constructed by former recognized objects. Then the scene structure is achieved from foreground to background. Two occlusion relations are proposed to establish occlusion model and to update cost function. Image segmentation technique is adopted to increase algorithm efficiency and to decrease discontinuity of disparity map. Experiments demonstrate that the performance of our algorithm is among the state of the art stereo algorithms on various data sets.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. International Journal of Computer Vision 47, 7–42 (2002)zbMATHCrossRefGoogle Scholar
  2. 2.
    Brown, M.Z., Hager, G.D.: Advances in computational stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence 25, 993–1008 (2003)CrossRefGoogle Scholar
  3. 3.
    Okutomi, M., Kanade, T.: A multiple baseline stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence 15, 353–363 (1993)CrossRefGoogle Scholar
  4. 4.
    Fusiello, A., Roberto, V., Trucco, E.: Efficient stereo with multiple windowing. In: IEEE Computer Vision and Pattern Recognition, pp. 858–863 (1997)Google Scholar
  5. 5.
    Geiger, D., Ladendorf, B., Yuille, A.: Occlusions and binocular stereo. In: European Conference on Computer Vision, pp. 425–433 (1992)Google Scholar
  6. 6.
    Veksler, O.: Fast variable window for stereo correspondence using integral images. In: IEEE Computer Vision and Pattern Recognition, pp. 556–564 (2003)Google Scholar
  7. 7.
    Birchfield, S., Tomasi, C.: Depth discontinuities by pixel-to-pixel stereo. International Journal of Computer Vision 35, 269–299 (1999)CrossRefGoogle Scholar
  8. 8.
    Bobick, A.F., Intille, S.S.: Large occlusion stereo. International Journal of Computer Vision 33, 181–200 (1999)CrossRefGoogle Scholar
  9. 9.
    Gong, M., Yang, Y.H.: Fast stereo matching using reliability-based dynamic programming and consistency constraints. In: IEEE International Conference on Computer Vision, pp. 610–617 (2003)Google Scholar
  10. 10.
    Cormen, T.H., Leiserson, C.E., Stein, C.: Introduction to algorithms. Higher Education Press and The MIT Press, Beijing (2002)Google Scholar
  11. 11.
    Roy, S.: Stereo without epipolar lines: A maximum-flow formulation. International Journal of Computer Vision 34, 147–161 (1999)CrossRefGoogle Scholar
  12. 12.
    Birchfield, S., Tomasi, C.: Multiway cut for stereo and motion with slanted surfaces. In: IEEE International Conference on Computer Vision, pp. 489–495 (1999)Google Scholar
  13. 13.
    Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 1222–1239 (2001)CrossRefGoogle Scholar
  14. 14.
    Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut / max-flow algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 1124–1137 (2004)CrossRefGoogle Scholar
  15. 15.
    Tao, H., Sawhney, H., Kumar, R.: A global matching framework for stereo computation. In: IEEE International Conference on Computer Vision, pp. 532–539 (2001)Google Scholar
  16. 16.
    Wei, Y., Quan, L.: Region-based progressive stereo matching. In: IEEE Computer Vision and Pattern Recognition, pp. 106–113 (2004)Google Scholar
  17. 17.
    Hong, L., Chen, G.: Segment-based stereo matching using graph cuts. In: IEEE Computer Vision and Pattern Recognition, pp. 74–81 (2004)Google Scholar
  18. 18.
    Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 603–619 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Zhang Kai
    • 1
  • Wang Yuzhou
    • 1
  • Wang Guoping
    • 1
  1. 1.HCI & Multimedia Lab., School of Electronics Engineering and Computer SciencePeking UniversityChina

Personalised recommendations