Advertisement

An Active Contour Model Guided by LBP Distributions

  • Michalis A. Savelonas
  • Dimitris K. Iakovidis
  • Dimitris E. Maroulis
  • Stavros A. Karkanis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4179)

Abstract

The use of active contours for texture segmentation seems rather attractive in the recent research, indicating that such methodologies may provide more accurate results. In this paper, a novel model for texture segmentation is presented, combining advantages of the active contour approach with texture information acquired by the Local Binary Pattern (LBP) distribution. The proposed LBP scheme has been formulated in order to capture regional information extracted from distributions of LBP values, characterizing a neighborhood around each pixel, instead of using a single LBP value to characterize each pixel. The log-likelihood statistic is employed as a similarity measure between the LBP distributions, resulting to more detailed and accurate segmentation of texture images.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Theodoridis, S., Koutroumbas, K.: Pattern Recognition, 2nd edn. Academic Press, London (2003)Google Scholar
  2. 2.
    Mirmehdi, M., Petrou, M.: Segmentation of Color Textures. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(2), 142–159 (2000)CrossRefGoogle Scholar
  3. 3.
    Quing, X., Jie, Y., Siyi, D.: Texture Segmentation using LBP embedded Region Competition. Electronic Letters on Computer Vision and Image Analysis 5(1), 41–47 (2005)Google Scholar
  4. 4.
    Rousson, M., Brox, T., Deriche, R.: Active Unsupervised Texture Segmentation on a Diffusion Based Feature Space. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Madison, Wisconsin, USA (2003)Google Scholar
  5. 5.
    Sagiv, C., Sochen, N.A., Zeevi, Y.: Integrated Active Contours for Texture Segmentation. IEEE Transactions on Image Processing 1(1), 1–19 (2004)Google Scholar
  6. 6.
    Clausi, D.A., Deng, H.: Design-Based Texture Feature Fusion Using Gabor Filters and Co-Occurrence Probabilities. IEEE Transactions on Image Processing 14(7), 925–936 (2005)CrossRefGoogle Scholar
  7. 7.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active Contour Models. International Journal on Computer Vision 1, 321–331 (1988)CrossRefGoogle Scholar
  8. 8.
    Chan, T.F., Vese, L.A.: Active Contours Without Edges. IEEE Transactions on Image Processing 7, 266–277 (2001)CrossRefGoogle Scholar
  9. 9.
    Chan, T., Sandberg, B., Vese, L.: Active Contours Without Edges for Vector-Valued Images. Journal of Visual Communication and Image Representation 11, 130–141 (2002)CrossRefGoogle Scholar
  10. 10.
    Paragios, N., Deriche, R.: Geodesic Active Contours for Supervised Texture Segmentation. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, pp. 2422–2427 (1999)Google Scholar
  11. 11.
    Aujol, J.F., Aubert, G., Blanc-Feraud, L.: Wavelet-Based Level Set Evolution for Classification of Textured Images. IEEE Transactions on Image Processing 12(12), 1634–1641 (2003)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Ojala, T., Pietikäinen, M., Harwood, D.: A Comparative Study of Texture Measures with Classification based on Feature Distributions. Pattern Recognition 29, 51–59 (1996)CrossRefGoogle Scholar
  13. 13.
    Paclic, P., Duin, R., Kempen, G.V., Kohlus, R.: Supervised Segmentation of Textures in Backscatter Images. In: Proceedings of IEEE International Conference on Pattern Recognition, vol. 2, pp. 490–493 (2002)Google Scholar
  14. 14.
    Mäenpää, T., Pietikäinen, M.: Classification with color and texture: Jointly or separately? Pattern Recognition 37(8), 1629–1640 (2004)CrossRefGoogle Scholar
  15. 15.
    Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7), 971–987 (2002)CrossRefGoogle Scholar
  16. 16.
    Pietikäinen, M., Ojala, T.: Nonparametric Texture Analysis with Simple Spatial Operators. In: Proceedings of 5th International Conference on Quality Control by Artificial Vision, Trois-Rivieres, Canada, pp. 11–16 (1999)Google Scholar
  17. 17.
    Mäenpää, T., Ojala, T., Pietikäinen, M., Maricor, S.: Robust Texture Classification by Subsets of Local Binary Patterns. In: Proceedings of 15th International Conference on Pattern Recognition, Barcelona, vol. 3, pp. 947–950 (2000)Google Scholar
  18. 18.
    Mumford, D., Shah, J.: Optimal Approximation by Piecewise Smooth Functions and Associated Variational Problems. Communications in Pure and Applied Mathematics 42, 577–685 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Osher, S., Sethian, J.: Fronts Propagating with Curvature- Dependent Speed: Algorithms Based on the Hamilton-Jacobi Formulations. Journal of Computational Physics 79, 12–49 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Aubert, G., Vese, L.: A Variational Method in Image Recovery. SIAM Journal on Numerical Analysis 34(5), 1948–1979 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Unser, M., Eden, M.: Nonlinear Operators for Improving Texture Segmentation Based on Features Extracted by Spatial Filtering. IEEE Trans. on Systems, Man and Cybernetics 20(4), 804–815 (1990)CrossRefGoogle Scholar
  22. 22.
    Brodatz, P.: Textures: A Photographic Album for Artists and Designers. Dover, New York (1996)Google Scholar
  23. 23.
  24. 24.
    Vese, L.A., Chan, T.F.: A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal on Computer Vision 50(3), 271–293 (2002)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Michalis A. Savelonas
    • 1
  • Dimitris K. Iakovidis
    • 1
  • Dimitris E. Maroulis
    • 1
  • Stavros A. Karkanis
    • 2
  1. 1.Dept. of Informatics and TelecommunicationsUniversity of AthensAthensGreece
  2. 2.Dept. of Informatics and Computer TechnologyLamia Institute of TechnologyLamiaGreece

Personalised recommendations