A New Proof of the GHS Minimum Spanning Tree Algorithm

  • Yoram Moses
  • Benny Shimony
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4167)

Abstract

This paper provides a proof of correctness for the celebrated Minimum Spanning Tree protocol of Gallager, Humblet and Spira [GHS83]. Both the protocol and the quest for a natural correctness proof have had considerable impact on the literature concerning network protocols and verification. We present an invariance proof that is based on a new intermediate-level abstraction of the protocol. A central role of the intermediate-level configurations in the proof is to facilitate the statement of invariants and other properties of the executions of GHS at the low level. This provides a powerful tool for both the statement and the proof of properties of the algorithm. The result is the first proof that follows the spirit of the informal arguments made in the original paper.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Bol79]
    Bollobás, B.: Graph theory, An introductory course. Graduate Texts in Mathematics 63, 1–180 (1979)Google Scholar
  2. [Bor26]
    Borūvka, O.: O jistém problému minimálním. Práce Mor. Prírodoved Spol. v Brne (Acta Societ. Scient. Natur. Moravicae) 3, 37–58 (1926) (Czech language)Google Scholar
  3. [C88]
    Chou, C.-T.: A Bug in the Distributed Minimum Spanning Tree Algorithms of Gallager, Humblet, and Spira (unpublished manuscript, 1988)Google Scholar
  4. [CG88]
    Chou, C.-T., Gafni, E.: Understanding and Verifying Distributed Algorithms Using Stratified Decomposition. In: PODC 1988, pp. 44–65 (1988)Google Scholar
  5. [GHS83]
    Gallager, R.G., Humblet, P.A., Spira, P.M.: A Distributed Algorithm for Minimum-Weight Spanning Trees. TOPLAS 5(1), 66–77 (1983)MATHCrossRefGoogle Scholar
  6. [Har69]
    Harary, F.: Graph Theory. Addison-Wesley, Reading (1969)Google Scholar
  7. [Hes99]
    Hesselink, W.H.: The Verified Incremental Design of a Distributed Spanning Tree Algorithm: Extended Abstract. Formal Aspects of Computing 11(1), 45–55 (1999)MATHCrossRefGoogle Scholar
  8. [JZ92]
    Janssen, W., Zwiers, J.: From Sequential Layers to Distributed Processes: Deriving a Distributed Minimum Weight Spanning Tree Algorithm (Extended Abstract). In: PODC 1992, pp. 215–227 (1992)Google Scholar
  9. [Kr56]
    Prim, R.C.: On the shortest subtree of a graph and the traveling salesman problem. Proc. Am. Math. Soc. 7, 48–50 (1956)CrossRefGoogle Scholar
  10. [Ly95]
    Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1996)MATHGoogle Scholar
  11. [MP95]
    Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems ⊙ Safety ⊙. Springer, Heidelberg (1995)Google Scholar
  12. [Pr57]
    Prim, R.C.: Shortest connection networks and some generalizations. Bell System Technical Journal 36, 1389–1401 (1957)Google Scholar
  13. [SdR87]
    Stomp, F.A., de Roever, W.P.: A Correctness Proof of a Distributed Minimum-Weight Spanning Tree Algorithm (extended abstract). In: ICDCS 1987, pp. 440–447 (1987)Google Scholar
  14. [S01]
    Peuker, S.: Halbordnungsbasierte Verfeinerung zur Verifikation verteilter Algorithmen. Ph.D. thesis, Humboldt University of Berlin (April 2001)Google Scholar
  15. [S02]
    Peuker, S.: Transition Refinement for Deriving a Distributed Minimum Weight Spanning Tree Algorithm. In: Esparza, J., Lakos, C.A. (eds.) ICATPN 2002. LNCS, vol. 2360, pp. 374–393. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. [W88]
    Welch, J.L.: Topics in Distributed Computing: The Impact of Partial Synchrony, and Modular Decomposition of Algorithms. Ph.D. thesis. MIT (June 1988)Google Scholar
  17. [WLL88]
    Welch, J.L., Lamport, L., Lynch, N.A.: A Lattice-Structured Proof Technique Applied to a Minimum Spanning Tree Algorithm (Extended Abstract). In: PODC 1988, pp. 28–43 (1988)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Yoram Moses
    • 1
  • Benny Shimony
    • 1
  1. 1.Department of Electrical EngineeringTechnion—Israel Institute of TechnologyHaifaIsrael

Personalised recommendations