Fault-Tolerant and Self-stabilizing Mobile Robots Gathering

– Feasibility Study –
  • Xavier Défago
  • Maria Gradinariu
  • Stéphane Messika
  • Philippe Raipin-Parvédy
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4167)


Gathering is a fundamental coordination problem in cooperative mobile robotics. In short, given a set of robots with arbitrary initial location and no initial agreement on a global coordinate system, gathering requires that all robots, following their algorithm, reach the exact same but not predetermined location. Gathering is particularly challenging in networks where robots are oblivious (i.e., stateless) and the direct communication is replaced by observations on their respective locations. Interestingly any algorithm that solves gathering with oblivious robots is inherently self-stabilizing.

In this paper, we significantly extend the studies of deterministic gathering feasibility under different assumptions related to synchrony and faults (crash and Byzantine). Unlike prior work, we consider a larger set of scheduling strategies, such as bounded schedulers, and derive interesting lower bounds on these schedulers. In addition, we extend our study to the feasibility of probabilistic gathering in both fault-free and fault-prone environments. To the best of our knowledge our work is the first to address the gathering from a probabilistic point of view.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: Formation of geometric patterns. SIAM Journal of Computing 28(4), 1347–1363 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Prencipe, G.: Corda: Distributed coordination of a set of autonomous mobile robots. In: Proc. 4th European Research Seminar on Advances in Distributed Systems (ERSADS 2001), Bertinoro, Italy, pp. 185–190 (2001)Google Scholar
  3. 3.
    Prencipe, G.: On the feasibility of gathering by autonomous mobile robots. In: Pelc, A., Raynal, M. (eds.) SIROCCO 2005. LNCS, vol. 3499, pp. 246–261. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous mobile robots with limited visibility. Theoretical Computer Science 337, 147–168 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Souissi, S., Défago, X., Yamashita, M.: Eventually consistent compasses for robust gathering of asynchronous mobile robots with limited visibility. Research Report IS-RR-2005-010, JAIST, Ishikawa, Japan (2005)Google Scholar
  6. 6.
    Ando, H., Oasa, Y., Suzuki, I., Yamashita, M.: Distributed memoryless point convergence algorithm for mobile robots with limited visibility. IEEE Trans. on Robotics and Automation 15(5), 818–828 (1999)CrossRefGoogle Scholar
  7. 7.
    Cohen, R., Peleg, D.: Convergence of autonomous mobile robots with inaccurate sensors and movements. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 549–560. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile robots. In: Proc. 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2004), New Orleans, LA, USA, pp. 1070–1078 (2004)Google Scholar
  9. 9.
    Fribourg, L., Messika, S., Picaronny, C.: Coupling and self-stabilization. Distributed Computing 18(3), 221–232 (2006)CrossRefGoogle Scholar
  10. 10.
    Défago, X., Gradinariu, M., Messika, S., Raipin-Parvédy, P.: Fault-tolerant and self-stabilizing mobile robots gathering: Feasibility study. Tech. Rep. PI-1802, IRISA, Rennes, France (2006)Google Scholar
  11. 11.
    Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1996)zbMATHGoogle Scholar
  12. 12.
    Lynch, N.A., Segala, R., Vaandrager, F.W.: Hybrid I/O automata. Information and Computation 185(1), 105–157 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)zbMATHGoogle Scholar
  14. 14.
    Prencipe, G.: The effect of synchronicity on the behavior of autonomous mobile robots. Theory of Computing Systems 38(5), 539–558 (2005)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Xavier Défago
    • 1
  • Maria Gradinariu
    • 2
  • Stéphane Messika
    • 3
  • Philippe Raipin-Parvédy
    • 2
    • 4
  1. 1.School of Information ScienceJAISTIshikawaJapan
  2. 2.IRISA/Université de Rennes 1France
  3. 3.LRI/Université Paris SudFrance
  4. 4.France Telecom R&DFrance

Personalised recommendations