Generating Raster DEM from Mass Points Via TIN Streaming

  • Martin Isenburg
  • Yuanxin Liu
  • Jonathan Shewchuk
  • Jack Snoeyink
  • Tim Thirion
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4197)

Abstract

It is difficult to generate raster Digital Elevation Models (DEMs) from terrain mass point data sets too large to fit into memory, such as those obtained by LIDAR. We describe prototype tools for streaming DEM generation that use memory and disk I/O very efficiently. From 500 million bare-earth LIDAR double precision points (11.2 GB) our tool can, in just over an hour on a standard laptop with two hard drives, produce a 50,394 × 30,500 raster DEM with 20 foot post spacing in 16 bit binary BIL format (3 GB), using less than 100 MB of main memory and less than 300 MB of temporary disk space.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Maune, D.F. (ed.): Digital elevation model technologies and applications: The DEM users manual. ASPRS, Bethesda, MD (2001)Google Scholar
  2. 2.
    Vitter, J.S.: External memory algorithms and data structures: Dealing with MASSIVE data. ACM Computing Surveys 33(2), 209–271 (2001)CrossRefGoogle Scholar
  3. 3.
    Agarwal, P.K., Arge, L., Yi, K.: I/O-efficient construction of constrained delaunay triangulations. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 355–366. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Cignoni, P., Montani, C., Rocchini, C., Scopigno, R.: External memory management and simplification of huge meshes. IEEE Transactions on Visualization and Computer Graphics 9(4), 525–537 (2003)CrossRefGoogle Scholar
  5. 5.
    Yoon, S., Lindstrom, P., Pascucci, V., Manocha, D.: Cache-oblivious mesh layouts. ACM Transactions on Graphics 24(3), 886–893 (2005)CrossRefGoogle Scholar
  6. 6.
    Isenburg, M., Gumhold, S.: Out-of-core compression for gigantic polygon meshes. ACM Transactions on Graphics 22(3), 935–942 (2003)CrossRefGoogle Scholar
  7. 7.
    Isenburg, M., Lindstrom, P., Gumhold, S., Snoeyink, J.: Large mesh simplification using processing sequences. In: Visualization 2003 Proceedings, pp. 465–472 (2003)Google Scholar
  8. 8.
    Isenburg, M., Lindstrom, P.: Streaming meshes. In: Visualization 2005 Proceedings, pp. 231–238 (2005)Google Scholar
  9. 9.
    Isenburg, M., Liu, Y., Shewchuk, J., Snoeyink, J.: Streaming computation of Delaunay triangulations. ACM Transactions on Graphics 25(3) (2006); Special issue on Proceedings of ACM SIGGRAPH 2006Google Scholar
  10. 10.
    Lawson, C.L.: Software for C 1 Surface Interpolation. In: Rice, J.R. (ed.) Mathematical Software III, pp. 161–194. Academic Press, New York (1977)Google Scholar
  11. 11.
    Bowyer, A.: Computing Dirichlet Tessellations. Computer Journal 24(2), 162–166 (1981)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Watson, D.F.: Computing the n-dimensional Delaunay Tessellation with Application to Voronoi Polytopes. Computer Journal 24(2), 167–172 (1981)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Akima, H.: A method of bivariate interpolation and smooth surface fitting for irregularly distributed data points. ACM Transactions on Mathematical Software 4, 148–159 (1978)MATHCrossRefGoogle Scholar
  14. 14.
    Agarwal, P.K., Arge, L., Danner, A.: From LIDAR to grid DEM: A scalable approach. In: Proc. International Symposium on Spatial Data Handling (2006)Google Scholar
  15. 15.
    Mitasova, H., Mitas, L.: Interpolation by regularized spline with tension: I. Theory and implementation. Mathematical Geology 25, 641–655 (1993)CrossRefGoogle Scholar
  16. 16.
    Gold, C.M.: Surface interpolation, spatial adjacency and GIS. In: Raper, J. (ed.) Three Dimensional Applications in Geographic Information Systems, pp. 21–35. Taylor and Francis, London (1989)Google Scholar
  17. 17.
    Sibson, R.: A brief description of natural neighbour interpolation. In: Barnett, V. (ed.) Interpreting Multivariate Data, pp. 21–36. John Wiley & Sons, Chichester (1981)Google Scholar
  18. 18.
    Watson, D.F.: Natural neighbour sorting. Australian Computer Journal 17(4), 189–193 (1985)Google Scholar
  19. 19.
    Hutchinson, M.F.: Calculation of hydrologically sound digital elevation models. In: Proceedings of the Third International Symposium on Spatial Data Handling, pp. 117–133 (1988)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Martin Isenburg
    • 1
  • Yuanxin Liu
    • 2
  • Jonathan Shewchuk
    • 1
  • Jack Snoeyink
    • 2
  • Tim Thirion
    • 2
  1. 1.Computer Science DivisionUniversity of CaliforniaBerkeley
  2. 2.Computer ScienceUniversity of North CarolinaChapel Hill

Personalised recommendations