Reducing the Number of Homogeneous Linear Equations in Finding Annihilators

  • Deepak Kumar Dalai
  • Subhamoy Maitra
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4086)

Abstract

Given a Boolean function f on n-variables, we find a reduced set of homogeneous linear equations by solving which one can decide whether there exist annihilators at degree d or not. Using our method the size of the associated matrix becomes \(\nu_f \times (\sum_{i=0}^{d} \binom{n}{i} -- \mu_f)\), where, νf = |{x | wt(x) > d, f(x) = 1}| and μf = |{x | wt(x) ≤d, f(x) = 1}| and the time required to construct the matrix is same as the size of the matrix. This is a preprocessing step before the exact solution strategy (to decide on the existence of the annihilators) that requires to solve the set of homogeneous linear equations (basically to calculate the rank) and this can be improved when the number of variables and the number of equations are minimized. As the linear transformation on the input variables of the Boolean function keeps the degree of the annihilators invariant, our preprocessing step can be more efficiently applied if one can find an affine transformation over f(x) to get h(x) = f(Bx+b) such that μh = |{x | h(x) = 1, wt(x) ≤d}| is maximized (and in turn νh is minimized too). We present an efficient heuristic towards this. Our study also shows for what kind of Boolean functions the asymptotic reduction in the size of the matrix is possible and when the reduction is not asymptotic but constant.

Keywords

Algebraic Attacks Algebraic Normal Form Annihilators Boolean Functions Homogeneous Linear Equations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Armknecht, F., Carlet, C., Gaborit, P., Künzli, S., Meier, W., Ruatta, O.: Efficient computation of algebraic immunity for algebraic and fast algebraic attacks. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 147–164. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Armknecht, F.: Improving Fast Algebraic Attacks. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 65–82. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Ars, G., Faugére, J.: Algebraic Immunities of functions over finite fields. INRIA report (2005)Google Scholar
  4. 4.
    Batten, L.M.: Algebraic Attacks over GF(q). In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004. LNCS, vol. 3348, pp. 84–91. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Botev, A., Tarannikov, Y.: Lower bounds on algebraic immunity for recursive constructions of nonlinear filters. Preprint (2004)Google Scholar
  6. 6.
    Braeken, A., Preneel, B.: Probabilistic algebraic attacks. In: Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 290–303. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Braeken, A., Preneel, B.: On the Algebraic Immunity of Symmetric Boolean Functions. In: Maitra, S., Veni Madhavan, C.E., Venkatesan, R. (eds.) INDOCRYPT 2005. LNCS, vol. 3797, pp. 35–48. Springer, Heidelberg (2005), http://eprint.iacr.org/ CrossRefGoogle Scholar
  8. 8.
    Braeken, A., Lano, J., Preneel, B.: Evaluating the Resistance of Stream Ciphers with Linear Feedback Against Fast Algebraic Attacks. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP 2006. LNCS, vol. 4058, pp. 40–51. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Canteaut, A.: Open problems related to algebraic attacks on stream ciphers. In: Ytrehus, Ø. (ed.) WCC 2005. LNCS, vol. 3969, pp. 120–134. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Carlet, C.: Improving the algebraic immunity of resilient and nonlinear functions and constructing bent functions. IACR ePrint server, (2004/276), http://eprint.iacr.org
  11. 11.
    Cheon, J.H., Lee, D.H.: Resistance of S-boxes against Algebraic Attacks. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 83–94. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Cho, J.Y., Pieprzyk, J.: Algebraic Attacks on SOBER-t32 and SOBER-t16 without Stuttering. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 49–64. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Courtois, N., Pieprzyk, J.: Cryptanalysis of block ciphers with overdefined systems of equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 267–287. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Courtois, N., Meier, W.: Algebraic attacks on stream ciphers with linear feedback. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 345–359. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Courtois, N.: Fast algebraic attacks on stream ciphers with linear feedback. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 176–194. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Courtois, N.T., Debraize, B., Garrido, E.: On Exact Algebraic [Non-]Immunity of S-Boxes Based on Power Functions. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP 2006. LNCS, vol. 4058, pp. 76–86. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Dalai, D.K., Gupta, K.C., Maitra, S.: Results on Algebraic Immunity for Cryptographically Significant Boolean Functions. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004. LNCS, vol. 3348, pp. 92–106. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    Dalai, D.K., Gupta, K.C., Maitra, S.: Cryptographically Significant Boolean functions: Construction and Analysis in terms of Algebraic Immunity. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 98–111. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Dalai, D.K., Maitra, S., Sarkar, S.: Basic Theory in Construction of Boolean Functions with Maximum Possible Annihilator Immunity. Cryptology ePrint Archive, No. 2005/229 (July 15, 2005), http://eprint.iacr.org/
  20. 20.
    Didier, F., Tillich, J.-P.: Computing the Algebraic Immunity Efficiently. In: Robshaw, M.J.B. (ed.) FSE 2006. LNCS, vol. 4047, pp. 359–374. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  21. 21.
    Lee, D.H., Kim, J., Hong, J., Han, J.W., Moon, D.: Algebraic Attacks on Summation Generators. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 34–48. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  22. 22.
    Meier, W., Pasalic, E., Carlet, C.: Algebraic attacks and decomposition of Boolean functions. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 474–491. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  23. 23.
    Nawaz, Y., Gong, G., Gupta, K.C.: Upper Bounds on Algebraic Immunity of Boolean Power Functions. In: Robshaw, M.J.B. (ed.) FSE 2006. LNCS, vol. 4047, pp. 375–389. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Deepak Kumar Dalai
    • 1
  • Subhamoy Maitra
    • 1
  1. 1.Applied Statistics UnitIndian Statistical InstituteCalcuttaIndia

Personalised recommendations