Advertisement

Direct Estimation of the Wall Shear Rate Using Parametric Motion Models in 3D

  • Markus Jehle
  • Bernd Jähne
  • Ulrich Kertzscher
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4174)

Abstract

We present a new optical-flow-based technique to estimate the wall shear rate using a special illumination technique that makes the brightness of particles dependent on the distance from the wall. The wall shear rate is derived directly (that means, without previous calculation of the velocity vector field) from two of the components of the velocity gradient tensor which in turn describes the kinematics of fluid flows up to the first order. By incorporating this into a total least squares framework, we can apply a further extension of the structure tensor technique. Results obtained both from synthetical and real data are shown, and reveal a substantial improvement compared to conventional techniques.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Horn, B.K.P., Schunk, B.G.: Determining optical flow. Artificial Intelligence 17, 185–204 (1981)CrossRefGoogle Scholar
  2. 2.
    Jehle, M., Klar, M., Jähne, B.: Optical-flow based velocity analysis. In: Tropea, C., Foss, J., Yarin, A. (eds.) Springer Handbook of Experimental Fluid Dynamics (in preparation)Google Scholar
  3. 3.
    Corpetti, T., Memin, E., Perez, P.: Dense estimation of fluid flows. IEEE Trans. on Pattern Analysis and Machine Intelligence 24, 365–380 (2002)CrossRefGoogle Scholar
  4. 4.
    Garbe, C., Spies, H., Jähne, B.: Estimation of surface flow and net heat flux from infrared image sequences. Journal of Mathematical Imaging and Vision 19, 159–174 (2003)zbMATHCrossRefGoogle Scholar
  5. 5.
    Ruhnau, P., Kohlberger, T., Schnörr, C., Nobach, H.: Variational optical flow estimation for particle image velocimetry. Experiments in Fluids 38, 21–32 (2005)CrossRefGoogle Scholar
  6. 6.
    Adrian, R.J.: Particle-imaging techniques for experimental fluid mechanics. Annu. Rev. Fluid Mech. 23, 261–304 (1991)CrossRefGoogle Scholar
  7. 7.
    Jähne, B., Haussecker, H., Geissler, P. (eds.): Handbook of Computer Vision and Applications. Academic Press, San Diego (1999)zbMATHGoogle Scholar
  8. 8.
    Debaene, P.: Neuartige Messmethode zur zeitlichen und örtlichen Erfassung der wandnahen Strömung in der Biofluidmechanik. Ph.D thesis, TU Berlin (2005)Google Scholar
  9. 9.
    Haussecker, H.W., Fleet, D.J.: Computing optical flow with physical models of brightness variation. PAMI 23, 661–673 (2001)Google Scholar
  10. 10.
    Fleet, D.J.: Measurement of Image Velocity. Kluwer Academic Publishers, Dordrecht (1992)zbMATHGoogle Scholar
  11. 11.
    Jehle, M., Jähne, B.: A novel method for spatiotemporal analysis of flows within the water-side viscous boundary layer. In: 12th International Symposium of Flow Visualisation, Göttingen, Germany (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Markus Jehle
    • 1
    • 2
  • Bernd Jähne
    • 1
    • 2
  • Ulrich Kertzscher
    • 3
  1. 1.Interdisciplinary Center for Scientific Computing (IWR)HeidelbergGermany
  2. 2.Institute for Environmental Physics (IUP)HeidelbergGermany
  3. 3.Labor für BiofluidmechanikCharité, UniversitätsmedizinBerlinGermany

Personalised recommendations