Advertisement

Probabilistic De Novo Peptide Sequencing with Doubly Charged Ions

  • Hansruedi Peter
  • Bernd Fischer
  • Joachim M. Buhmann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4174)

Abstract

Sequencing of peptides by tandem mass spectrometry has matured to the key technology for proteomics. Noise in the measurement process strongly favors statistical models like NovoHMM, a recently published generative approach based on factorial hidden Markov models [1,2]. We extend this hidden Markov model to include information of doubly charged ions since the original model can only cope with singly charged ions. This modification requires a refined discretization of the mass scale and, thereby, it increases its sensitivity and recall performance on a number of datasets to compare favorably with alternative approaches for mass spectra interpretation.

Keywords

Hide Markov Model Tandem Mass Spectrometry Markov Chain Model Emission Variable Correct Amino Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fischer, B., Roth, V., Buhmann, J.M., Grossmann, J., Baginsky, S., Gruissem, W., Roos, F., Widmayer, P.: A hidden markov model for de novo peptide sequencing. In: Neural Information Processing Systems, USA, vol. 17, pp. 457–464. MIT Press, Cambridge (2005)Google Scholar
  2. 2.
    Fischer, B., Roth, V., Roos, F., Grossmann, J., Baginsky, S., Widmayer, P., Gruissem, W., Buhmann, J.M.: NovoHMM: A hidden markov model for de novo peptide sequencing. Analytical Chemistry 77(22), 7265–7273 (2005)CrossRefGoogle Scholar
  3. 3.
    Chen, R., Pan, A., Brentnall, T., Aebersold, R.: Proteomic profiling of pancreatic cancer for biomarker discovery. Molecular and Cellular Proteomics 4(4), 523–533 (2005)CrossRefGoogle Scholar
  4. 4.
    Eng, J.K., McCormack, A.L., Yates III, J.R.: An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. American Society for Mass Spectrometry 5(11), 976–989 (1994)CrossRefGoogle Scholar
  5. 5.
    Hirosawa, M., Hoshida, M., Ishikawa, M., Toya, T.: Masqot: multiple alignment system for protein sequences based on three-way dynamic programming. Computer Applications in the Bioscience 9(2), 161–167 (1993)Google Scholar
  6. 6.
    Sadygov, R.G., Cociorva, D., Yates III, J.R.: Large-scale database searching using tandem mass spectra: Looking up the answer in the back of the book. Nature Methods 1(3), 195–202 (2004)CrossRefGoogle Scholar
  7. 7.
    Taylor, J.A., Johnson, R.S.: Sequence database searches via de novo peptide sequencing by tandem mass spectrometry. Rapid Communications in Mass Spectrometry 11, 1067–1075 (1997)CrossRefGoogle Scholar
  8. 8.
    Taylor, J.A., Johnson, R.S.: Implementation and uses of automated de novo peptide sequencing by tandem mass spectrometry. Analytical Chemistry 73, 2594–2604 (2001)CrossRefGoogle Scholar
  9. 9.
    Ma, B., Zhang, K., Hendrie, C., Liang, C., Li, M., Doherty-Kirby, A., Lajoie, G.: Peaks: Powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Communications in Mass Spectrometry 17(20), 2337–2342 (2003)CrossRefGoogle Scholar
  10. 10.
    Dancik, V., Addona, T.A., Clauser, K.R., Vath, J.E.: De novo peptide sequencing via tandem mass spectrometry. Journal of Computational Biology 6, 327–342 (1999)CrossRefGoogle Scholar
  11. 11.
    Frank, A., Pevzner, P.: Pepnovo: De novo peptide sequencing via probabilistic network modeling. Analytical Chemistry 77(4), 964–973 (2005)CrossRefGoogle Scholar
  12. 12.
    Zoubin Ghahramani, M.I.J.: Factorial hidden markov models. Machine Learning 29(2-3), 245–273 (1997)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Hansruedi Peter
    • 1
  • Bernd Fischer
    • 1
  • Joachim M. Buhmann
    • 1
  1. 1.Institute of Computational ScienceETH ZurichSwitzerland

Personalised recommendations